margin_rank_loss_op.cc 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/margin_rank_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
Y
Yibing Liu 已提交
17 18 19 20 21 22

namespace paddle {
namespace operators {

class MarginRankLossOp : public framework::OperatorWithKernel {
 public:
23
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
24

Y
Yibing Liu 已提交
25
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
26
    // input check
27 28 29 30 31 32 33 34 35 36 37 38 39
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto label_dims = ctx->GetInputDim("Label");
    auto x1_dims = ctx->GetInputDim("X1");
    auto x2_dims = ctx->GetInputDim("X2");
    PADDLE_ENFORCE(
        (label_dims == x1_dims) && (x1_dims == x2_dims) &&
            (label_dims.size() == 2) && (label_dims[1] == 1),
        "All inputs must be 2-D tensor with shape [batch_size x 1].");
    ctx->SetOutputDim("Activated", label_dims);
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
40 41 42
  }
};

43
template <typename T>
Y
Yibing Liu 已提交
44 45
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
46
  void Make() override {
47
    AddInput("X1",
Y
Yibing Liu 已提交
48 49
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "one item X1 to be ranked, from pairwise ranking model.");
50
    AddInput("X2",
Y
Yibing Liu 已提交
51 52
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "another item X2 to be ranked, from pairwise ranking model.");
53
    AddInput("Label",
54 55 56
             "(2-D tensor with shape [batch_size x 1]) "
             "The label indicating X1 ranked higher than X2 or not, "
             "can only be +1 or -1.");
Y
Yibing Liu 已提交
57
    AddOutput("Activated",
58 59
              "(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
              "to indicate whether each element of Output(Out) is activated.")
Y
Yibing Liu 已提交
60
        .AsIntermediate();
61
    AddOutput("Out",
Y
Yibing Liu 已提交
62
              "(2-D tensor with shape [batch_size x 1]) "
63
              "The output loss of MarginRankLoss operator.");
K
kexinzhao 已提交
64 65
    AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
        .SetDefault(static_cast<T>(0));
66
    AddComment(R"DOC(
K
kexinzhao 已提交
67
MarginRankLoss Operator.
68

K
kexinzhao 已提交
69
This operator measures the loss given a pair of training sample
Y
Yibing Liu 已提交
70
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1` 
K
kexinzhao 已提交
71 72
indicating X1 is ranked higher than `X2` and `Label = -1` otherwise. The loss 
is calculated as:
73

K
kexinzhao 已提交
74
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
Y
Yibing Liu 已提交
75

K
kexinzhao 已提交
76
The attribute `margin` here helps make the predictions more robust.
Y
Yibing Liu 已提交
77 78
Denote the item ranked higher as the positive sample, otherwise the negative 
sample. If the score of the two samples satisfies 
Y
Yibing Liu 已提交
79

K
kexinzhao 已提交
80
$positive sample - negative sample < margin$
Y
Yibing Liu 已提交
81

K
kexinzhao 已提交
82 83
the pair of samples will contribute to the final loss, which will backpropagate 
and train the ranking model to enlarge the difference between the two scores.
84 85 86

For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
Y
Yibing Liu 已提交
87 88 89 90 91 92 93

)DOC");
  }
};

class MarginRankLossGradOp : public framework::OperatorWithKernel {
 public:
94
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
95

Y
Yibing Liu 已提交
96
  void InferShape(framework::InferShapeContext *ctx) const override {
97 98 99 100 101 102 103 104
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Activated"),
                   "Intermediate(Activated) shouldn't be null.");
    auto dims = ctx->GetInputDim("Label");
    ctx->SetOutputDim(framework::GradVarName("X1"), dims);
    ctx->SetOutputDim(framework::GradVarName("X2"), dims);
Y
Yibing Liu 已提交
105 106 107
  }
};

H
hong 已提交
108 109
template <typename T>
class MarginRankLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
110
 public:
H
hong 已提交
111
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
112 113

 protected:
H
hong 已提交
114 115
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
116
    op->SetType("margin_rank_loss_grad");
H
hong 已提交
117 118 119 120 121 122
    op->SetInput("Activated", this->Output("Activated"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Label", this->Input("Label"));
    op->SetOutput(framework::GradVarName("X1"), this->InputGrad("X1"));
    op->SetOutput(framework::GradVarName("X2"), this->InputGrad("X2"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
123 124 125 126
    return op;
  }
};

Y
Yibing Liu 已提交
127 128 129 130
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
131 132
REGISTER_OPERATOR(margin_rank_loss, ops::MarginRankLossOp,
                  ops::MarginRankLossOpMaker<float>,
H
hong 已提交
133 134
                  ops::MarginRankLossGradMaker<paddle::framework::OpDesc>,
                  ops::MarginRankLossGradMaker<paddle::imperative::OpBase>);
135
REGISTER_OPERATOR(margin_rank_loss_grad, ops::MarginRankLossGradOp);
Y
Yibing Liu 已提交
136 137
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss,
Q
QI JUN 已提交
138
    ops::MarginRankLossKernel<paddle::platform::CPUDeviceContext, float>);
Y
Yibing Liu 已提交
139 140
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss_grad,
Q
QI JUN 已提交
141
    ops::MarginRankLossGradKernel<paddle::platform::CPUDeviceContext, float>);