instance_norm_op.h 5.2 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/norm_utils.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

class InstanceNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override;
};

class InstanceNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override;
};

class InstanceNormDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override;
};

class InstanceNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override;
};

H
hong 已提交
77 78
template <typename T>
class InstanceNormGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
79
 public:
H
hong 已提交
80
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
81 82

 protected:
H
hong 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  std::unique_ptr<T> Apply() const override {
    auto *op = new T();
    op->SetType("instance_norm_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("SavedMean", this->Output("SavedMean"));
    op->SetInput("SavedVariance", this->Output("SavedVariance"));

    op->SetAttrMap(this->Attrs());
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));

    return std::unique_ptr<T>(op);
  }
L
lvmengsi 已提交
100 101
};

H
hong 已提交
102 103
template <typename T>
class InstanceNormDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
104
 public:
H
hong 已提交
105
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
106 107

 protected:
H
hong 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
  std::unique_ptr<T> Apply() const override {
    auto *op = new T();
    op->SetType("instance_norm_grad_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("SavedMean", this->Input("SavedMean"));
    op->SetInput("SavedVariance", this->Input("SavedVariance"));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
    op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
    op->SetInput("DY", this->Input(framework::GradVarName("Y")));

    op->SetAttrMap(this->Attrs());
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DScale", this->InputGrad("Scale"));
    op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
    return std::unique_ptr<T>(op);
  }
L
lvmengsi 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
};

class InstanceNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", "Y"}};
  }
};

template <typename DeviceContext, typename T>
class InstanceNormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override;
};

template <typename DeviceContext, typename T>
class InstanceNormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override;
};

template <typename DeviceContext, typename T>
class InstanceNormDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override;
};

}  // namespace operators
}  // namespace paddle