deformable_conv_op.cc 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/operators/deformable_conv_op.h"
#include <memory>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#include "paddle/fluid/operators/conv_op.h"

namespace paddle {
namespace operators {
class DeformableConvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor) The input of deformable conv op. "
             "The shape of input is "
             "[N, channel_in, H, W]");
    AddInput("Offset",
             "(Tensor) The input offset. "
             "The shape of the offset is "
             "[N, deformable_groups * kernel_w * kernel_h * 2, H, W");
    AddInput("Mask",
             "(Tensor) The input mask. "
             "The shape of the mask is "
             "[N, deformable_groups * kernel_w * kernel_h, H, W].");
    AddInput("Filter",
             "(Tensor) The Input Filter "
             "The shape of the wight is "
             "[num_filters, channel_in, kernel_h, kernel_w.");
    AddOutput("Output",
              "(Tensor) The output. "
              "The shape of the output tensor is "
              "[N, num_filters, out_height, out_width]].");
    AddAttr<std::vector<int>>("strides",
                              "(vector<int> default:{1, 1}), the "
                              "strides(h_stride, w_stride) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<std::vector<int>>("paddings",
                              "(vector<int> default:{0,0}), the "
                              "paddings(h_pad, w_pad) of "
                              "convolution operator. ")
        .SetDefault({0, 0});
    AddAttr<std::vector<int>>("dilations",
                              "(vector<int> default:{1, 1}), the "
                              "dilations(h_dilation, w_dilation) of "
                              "convolution operator.")
        .SetDefault({1, 1});
    AddAttr<int>(
        "groups",
        "(int default:1), the groups number of the convolution operator. "
        "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
        "when group=2, the first half of the filters is only connected to the "
        "first half of the input channels, while the second half of the "
        "filters "
        "is only connected to the second half of the input channels.")
        .SetDefault(1);
    AddAttr<int>("deformable_groups",
                 "(int default:1), the number of the deformable groups.")
        .SetDefault(1);
    AddAttr<int>("im2col_step",
                 "im2col maximum number of image per computation")
        .SetDefault(64);
    AddComment(R"DOC(
**Deformable Convolution Operator**

Compute 2-D deformable convolution on 4-D input.

Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:

$$
y(p) = \\sum_{k=1}^{K}{w_k * x(p + p_k + \\Delta p_k) * \\Delta m_k}
$$

Where $$\\Delta p_k$$ and $$\Delta m_k$$ are the learnable offset and modulation scalar for the k-th location, respectively.

Refer to 'Deformable ConvNets v2: More Deformable, Better Results
'<https://arxiv.org/abs/1811.11168v2>

Example:
  Input:
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
       Offset shape: $(N, 2 * deformable_groups, * H_f * W_f, H_{out}, W_{out})$
       Mask shape: $(N, deformable_groups * H_f * W_f, H_{out}, W_{out})$
  Output:
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
                     where $H_{out}, W_{out}$ must be equal to $H_{in}, W_{in}$ respectively.
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC");
  }
};

class DeformableConvOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of DeformableConvOp "
                   "should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Offset"),
                   "Input(Offset) of DeformableConvOp "
                   "should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Mask"),
                   "Input(Mask) of DeformableConvOp "
                   "should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Filter"),
                   "Input(Filter) of DeformableConvOp "
                   "should not be null");
    PADDLE_ENFORCE(ctx->HasOutput("Output"),
                   "Output(Output) of DeformableConvOp "
                   "should not be null.");

    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    auto offset_dims = ctx->GetInputDim("Offset");
    auto mask_dims = ctx->GetInputDim("Mask");

    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
    std::vector<int> dilations =
        ctx->Attrs().Get<std::vector<int>>("dilations");
    int groups = ctx->Attrs().Get<int>("groups");
    int deformable_groups = ctx->Attrs().Get<int>("deformable_groups");
    int im2col_step = ctx->Attrs().Get<int>("im2col_step");

    PADDLE_ENFORCE(in_dims.size() == 4,
                   "Conv input should be 4-D tensor, get %u", in_dims.size());
    PADDLE_ENFORCE_EQ(
        in_dims.size(), filter_dims.size(),
        "Conv input dimension and filter dimension should be the same.");
    PADDLE_ENFORCE_EQ(
        in_dims.size() - strides.size(), 2U,
        "Conv input dimension and strides dimension should be consistent.");
    PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
                      "Conv paddings dimension and Conv strides dimension "
                      "should be the same.");

    PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
                      "The number of input channels should be equal to filter "
                      "channels * groups.");
    PADDLE_ENFORCE_EQ(
        filter_dims[0] % groups, 0,
        "The number of output channels should be divided by groups.");
    PADDLE_ENFORCE_EQ(filter_dims[0] % deformable_groups, 0,
                      "The number of output channels should be "
                      "divided by deformable groups.");

    if (in_dims[0] > im2col_step) {
      PADDLE_ENFORCE_EQ(
          in_dims[0] % im2col_step, 0U,
          "Input batchsize must be smaller than or divide im2col_step");
    }

    for (size_t i = 0; i < strides.size(); ++i) {
      PADDLE_ENFORCE_GT(strides[i], 0U, "stride %d size incorrect", i);
    }
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_GT(dilations[i], 0U, "dilation %d size incorrect", i);
    }

    std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
    for (size_t i = 0; i < strides.size(); ++i) {
178 179 180 181 182 183 184 185
      if ((!ctx->IsRuntime()) &&
          (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
        output_shape.push_back(-1);
      } else {
        output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                              filter_dims[i + 2], dilations[i],
                                              paddings[i], strides[i]));
      }
186
    }
187

188 189
    PADDLE_ENFORCE_EQ(output_shape[1] % deformable_groups, 0U,
                      "output num_filter must divide deformable group size.");
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(output_shape[2], offset_dims[2],
                        "output height must equal to offset map height.");
      PADDLE_ENFORCE_EQ(output_shape[3], offset_dims[3],
                        "output width must equal to offset map width.");
      PADDLE_ENFORCE_EQ(offset_dims[1] % (filter_dims[2] * filter_dims[3]), 0U,
                        "offset filter must divide deformable group size.");
      PADDLE_ENFORCE_EQ(offset_dims[1] / (2 * filter_dims[2] * filter_dims[3]),
                        deformable_groups,
                        "offset filter must divide deformable group size.");
      PADDLE_ENFORCE_EQ(output_shape[2], mask_dims[2],
                        "output height must equal to mask map height.");
      PADDLE_ENFORCE_EQ(output_shape[3], mask_dims[3],
                        "output width must equal to mask map width.");

      PADDLE_ENFORCE_EQ(mask_dims[1] % (filter_dims[2] * filter_dims[3]), 0U,
                        "mask filter must divide deformable group size.");
      PADDLE_ENFORCE_EQ(mask_dims[1] / (filter_dims[2] * filter_dims[3]),
                        deformable_groups,
                        "mask filter must divide deformable group size.");
    }

213 214 215 216 217 218
    ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
219 220 221
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
222 223 224
  }
};

H
hong 已提交
225 226
template <typename T>
class DeformableConvGradOpMaker : public framework::SingleGradOpMaker<T> {
227
 public:
H
hong 已提交
228
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
229 230

 protected:
H
hong 已提交
231 232
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
233 234

    op->SetType("deformable_conv_grad");
H
hong 已提交
235 236 237 238 239 240 241 242 243 244 245 246
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Offset", this->Input("Offset"));
    op->SetInput("Mask", this->Input("Mask"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Offset"), this->InputGrad("Offset"));
    op->SetOutput(framework::GradVarName("Mask"), this->InputGrad("Mask"));

    op->SetAttrMap(this->Attrs());
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    return op;
  }
};

class DeformableConvGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto in_dims = ctx->GetInputDim("Input");
    auto filter_dims = ctx->GetInputDim("Filter");
    auto offset_dims = ctx->GetInputDim("Offset");
    auto mask_dims = ctx->GetInputDim("Mask");

    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Output")),
                   "the gradient of output(Out) must not be null");
    if (ctx->HasOutput(framework::GradVarName("Input"))) {
      ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Offset"))) {
      ctx->SetOutputDim(framework::GradVarName("Offset"), offset_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Mask"))) {
      ctx->SetOutputDim(framework::GradVarName("Mask"), mask_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
280 281 282
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
283 284 285 286 287 288 289 290
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(deformable_conv, ops::DeformableConvOp,
                  ops::DeformableConvOpMaker,
H
hong 已提交
291 292 293
                  ops::DeformableConvGradOpMaker<paddle::framework::OpDesc>,
                  ops::DeformableConvGradOpMaker<paddle::imperative::OpBase>);

294
REGISTER_OPERATOR(deformable_conv_grad, ops::DeformableConvGradOp);
295 296 297 298 299 300

REGISTER_OP_CPU_KERNEL(deformable_conv, ops::DeformableConvCPUKernel<float>,
                       ops::DeformableConvCPUKernel<double>);
REGISTER_OP_CPU_KERNEL(deformable_conv_grad,
                       ops::DeformableConvGradCPUKernel<float>,
                       ops::DeformableConvGradCPUKernel<double>);