“6272ba40dc0ecead9e97ba2e94d2c9c0cec6b133”上不存在“tools/manylinux1/Dockerfile.Inference”
bpr_loss_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/bpr_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class BprLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
27
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
28 29 30
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
31
    auto label_dims = ctx->GetInputDim("Label");
32
    int rank = x_dims.size();
33 34
    PADDLE_ENFORCE_EQ(rank, label_dims.size(),
                      "Input(X) and Input(Label) shall have the same rank.");
P
phlrain 已提交
35 36 37 38 39 40 41 42

    if (ctx->IsRuntime() || (framework::product(x_dims) > 0 &&
                             framework::product(label_dims) > 0)) {
      PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                        framework::slice_ddim(label_dims, 0, rank - 1),
                        "Input(X) and Input(Label) shall have the same shape "
                        "except the last dimension.");
    }
43 44 45 46 47 48 49 50 51 52 53 54

    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of Seq-bpr
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
55 56 57
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
58 59 60 61 62 63 64 65 66
  }
};

class BprLossGradientOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
67
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
68 69 70 71 72 73
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
74
    auto label_dims = ctx->GetInputDim("Label");
75 76 77 78
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
                      "Input(Y@Grad) and Input(X) should have the same rank.");
79 80
    PADDLE_ENFORCE_EQ(label_dims.size(), rank,
                      "Input(Label) and Input(X) should have the same rank.");
81
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
82 83
                      framework::slice_ddim(label_dims, 0, rank - 1),
                      "The Input(X) and Input(Label) should have the same "
84 85 86 87 88 89 90
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(dy_dims, 0, rank - 1),
                      "The Input(X) and Input(Y@Grad) should have the same "
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
                      "The last dimension of Input(Y@Grad) should be 1.");
91 92
    PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
                      " the last dimension of Input(Label) should be 1.");
93 94 95 96 97 98 99 100 101
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
102 103 104
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        platform::CPUPlace());
105 106 107 108 109 110 111 112 113 114 115
  }
};

class BprLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "real number.");
    AddInput(
116
        "Label",
117 118 119 120 121 122 123 124
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. the last dimension "
        "size is 1.");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the sequence bpr loss.");
    AddComment(R"DOC(
125
Bayesian Personalized Ranking Loss Operator.
126

127
This operator belongs to pairwise ranking loss. Label is the desired item.
128
The loss at a given point in one session is defined as:
129 130 131
$Y[i] = -\frac{1}{N_{i}} * \sum_{j=0}^{N_{i}}\log(\sigma(X[i, Label[i]]-X[i, j]))$

Learn more details by reading paper <session-based recommendations with recurrent
132
neural networks>(https://arxiv.org/abs/1511.06939)
133 134 135 136

)DOC");
  }
};
S
sneaxiy 已提交
137

H
hong 已提交
138 139
template <typename T>
class BprLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
140
 public:
H
hong 已提交
141
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
142 143

 protected:
H
hong 已提交
144 145
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
146
    op->SetType("bpr_loss_grad");
H
hong 已提交
147 148 149 150 151
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
152 153 154
    return op;
  }
};
155 156 157 158 159 160 161
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPUCtx = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(bpr_loss, ops::BprLossOp, ops::BprLossOpMaker,
H
hong 已提交
162 163
                  ops::BprLossGradMaker<paddle::framework::OpDesc>,
                  ops::BprLossGradMaker<paddle::imperative::OpBase>);
164 165 166 167 168 169
REGISTER_OPERATOR(bpr_loss_grad, ops::BprLossGradientOp);
REGISTER_OP_CPU_KERNEL(bpr_loss, ops::BprLossOpKernel<CPUCtx, float>,
                       ops::BprLossOpKernel<CPUCtx, double>);
REGISTER_OP_CPU_KERNEL(bpr_loss_grad,
                       ops::BprLossGradientOpKernel<CPUCtx, float>,
                       ops::BprLossGradientOpKernel<CPUCtx, double>);