sgd.py 4.7 KB
Newer Older
J
Jiawei Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .optimizer import Optimizer
from ..fluid import core
from ..fluid import framework
from ..fluid.framework import Variable, name_scope
from ..fluid.dygraph import no_grad
W
wanghuancoder 已提交
20
from paddle import _C_ops
J
Jiawei Wang 已提交
21

22 23
__all__ = []

J
Jiawei Wang 已提交
24 25

class SGD(Optimizer):
26
    r"""
J
Jiawei Wang 已提交
27 28 29 30 31 32 33 34 35
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Parameters:
        learning_rate (float|Tensor|LearningRateDecay, optional): The learning rate used to update ``Parameter``.
            It can be a float value, a ``Tensor`` with a float type or a LearningRateDecay. The default value is 0.001.
36
        parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
J
Jiawei Wang 已提交
37 38 39
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
        weight_decay (float|WeightDecayRegularizer, optional): The strategy of regularization. \
40 41 42 43 44 45
            It canbe a float value as coeff of L2 regularization or \
            :ref:`api_fluid_regularizer_L1Decay`, :ref:`api_fluid_regularizer_L2Decay`.
            If a parameter has set regularizer using :ref:`api_fluid_ParamAttr` already, \
            the regularization setting here in optimizer will be ignored for this parameter. \
            Otherwise, the regularization setting here in optimizer will take effect. \
            Default None, meaning there is no regularization.
J
Jiawei Wang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` . 
        
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
            linear = paddle.nn.Linear(10, 10)
            inp = paddle.to_tensor(inp)
            out = linear(inp)
            loss = paddle.mean(out)
            beta1 = paddle.to_tensor([0.9], dtype="float32")
            beta2 = paddle.to_tensor([0.99], dtype="float32")
            sgd = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), weight_decay=0.01)
            back = out.backward()
            sgd.step()
            sgd.clear_grad()

    """

    def __init__(self,
                 learning_rate=0.001,
                 parameters=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None):
        if learning_rate is None:
            raise ValueError("learning_rate is not set")
        super(SGD, self).__init__(
            learning_rate=learning_rate,
            parameters=parameters,
            weight_decay=weight_decay,
            grad_clip=grad_clip,
            name=name)
        self.type = "sgd"

89
    @no_grad
J
Jiawei Wang 已提交
90
    def _append_optimize_op(self, block, param_and_grad):
91 92
        if isinstance(param_and_grad, dict):
            param_and_grad = self._update_param_group(param_and_grad)
J
Jiawei Wang 已提交
93 94
        lr = self._create_param_lr(param_and_grad)
        if framework.in_dygraph_mode():
W
wanghuancoder 已提交
95 96
            _C_ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                       param_and_grad[0])
J
Jiawei Wang 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            return None

        assert isinstance(block, framework.Block)
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr
            },
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)

        return sgd_op
112 113 114 115

    def _update_param_group(self, parameters):
        parameters = parameters.get('params')
        return parameters