full_kernel.cu 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/phi/kernels/sparse/full_kernel.h"

17 18 19
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
20
#include "paddle/phi/core/tensor_utils.h"
21 22 23 24 25
#include "paddle/phi/kernels/funcs/elementwise_base.h"

namespace phi {

template <typename InT, typename OutT = InT>
Z
Zhang Zheng 已提交
26
struct FullFunctor {
27 28 29
  OutT value;

  template <typename VType>
Z
Zhang Zheng 已提交
30
  explicit inline FullFunctor(VType val) {
31 32 33 34 35 36 37 38 39 40 41 42 43 44
    value = static_cast<OutT>(val);
  }

  __device__ __forceinline__ OutT operator()() const {
    return static_cast<OutT>(value);
  }
};

template <typename T, typename Context>
void CooFullLikeKernel(const Context& dev_ctx,
                       const SparseCooTensor& x,
                       const Scalar& val,
                       DataType dtype,
                       SparseCooTensor* out) {
45 46
  phi::Copy<Context>(
      dev_ctx, x.indices(), dev_ctx.GetPlace(), false, out->mutable_indices());
47

48 49
  DenseTensor* values = out->mutable_values();
  values->Resize(x.values().dims());
50 51 52 53 54 55 56
  dev_ctx.template Alloc<T>(values);

  std::vector<const DenseTensor*> inputs = {};
  std::vector<DenseTensor*> outputs = {values};
  int numel = values->numel();
  if (numel > 0) {
    phi::funcs::ElementwiseKernel<T>(
Z
Zhang Zheng 已提交
57
        dev_ctx, inputs, &outputs, FullFunctor<T>(val.to<T>()));
58 59 60 61 62 63 64 65 66 67
  }
  out->set_dims(x.dims());
}

template <typename T, typename Context>
void CsrFullLikeKernel(const Context& dev_ctx,
                       const SparseCsrTensor& x,
                       const Scalar& val,
                       DataType dtype,
                       SparseCsrTensor* out) {
68 69 70 71 72
  phi::Copy<Context>(
      dev_ctx, x.crows(), dev_ctx.GetPlace(), false, out->mutable_crows());

  phi::Copy<Context>(
      dev_ctx, x.cols(), dev_ctx.GetPlace(), false, out->mutable_cols());
73

74 75
  DenseTensor* values = out->mutable_values();
  values->Resize(x.values().dims());
76 77 78 79 80 81 82
  dev_ctx.template Alloc<T>(values);

  std::vector<const DenseTensor*> inputs = {};
  std::vector<DenseTensor*> outputs = {values};
  int numel = values->numel();
  if (numel > 0) {
    phi::funcs::ElementwiseKernel<T>(
Z
Zhang Zheng 已提交
83
        dev_ctx, inputs, &outputs, FullFunctor<T>(val.to<T>()));
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
  }
  out->set_dims(x.dims());
}

}  // namespace phi

PD_REGISTER_KERNEL(coo_full_like,
                   GPU,
                   ALL_LAYOUT,
                   phi::CooFullLikeKernel,
                   float,
                   double,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::float16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_full_like,
                   GPU,
                   ALL_LAYOUT,
                   phi::CsrFullLikeKernel,
                   float,
                   double,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::float16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}