analyzer_tester.cc 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/analysis/analyzer.h"
16

17
#include <google/protobuf/text_format.h>
18
#include <gtest/gtest.h>
19
#include "paddle/fluid/framework/ir/pass.h"
20
#include "paddle/fluid/inference/analysis/ut_helper.h"
21
#include "paddle/fluid/inference/api/helper.h"
22
#include "paddle/fluid/inference/api/paddle_inference_api.h"
23
#include "paddle/fluid/platform/profiler.h"
24

25 26
DEFINE_string(infer_ditu_rnn_model, "", "model path for ditu RNN");
DEFINE_string(infer_ditu_rnn_data, "", "data path for ditu RNN");
27 28
DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
29

30 31 32 33
namespace paddle {
namespace inference {
namespace analysis {

Y
Yan Chunwei 已提交
34
TEST(Analyzer, analysis_without_tensorrt) {
35
  FLAGS_IA_enable_tensorrt_subgraph_engine = false;
Y
Yan Chunwei 已提交
36 37
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
38 39 40 41
  Analyzer analyser;
  analyser.Run(&argument);
}

Y
Yan Chunwei 已提交
42
TEST(Analyzer, analysis_with_tensorrt) {
43
  FLAGS_IA_enable_tensorrt_subgraph_engine = true;
Y
Yan Chunwei 已提交
44 45
  Argument argument;
  argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
46 47 48 49
  Analyzer analyser;
  analyser.Run(&argument);
}

50
void TestWord2vecPrediction(const std::string &model_path) {
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  auto predictor =
      ::paddle::CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(
          config);

  // One single batch

  int64_t data[4] = {1, 2, 3, 4};
  PaddleTensor tensor;
  tensor.shape = std::vector<int>({4, 1});
  tensor.data = PaddleBuf(data, sizeof(data));
  tensor.dtype = PaddleDType::INT64;

  // For simplicity, we set all the slots with the same data.
  std::vector<PaddleTensor> slots(4, tensor);
  std::vector<PaddleTensor> outputs;
  CHECK(predictor->Run(slots, &outputs));

  PADDLE_ENFORCE(outputs.size(), 1UL);
  // Check the output buffer size and result of each tid.
  PADDLE_ENFORCE(outputs.front().data.length(), 33168UL);
  float result[5] = {0.00129761, 0.00151112, 0.000423564, 0.00108815,
                     0.000932706};
  const size_t num_elements = outputs.front().data.length() / sizeof(float);
  // The outputs' buffers are in CPU memory.
  for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
    LOG(INFO) << "data: "
81 82
              << static_cast<float *>(outputs.front().data.data())[i];
    PADDLE_ENFORCE(static_cast<float *>(outputs.front().data.data())[i],
83 84 85 86
                   result[i]);
  }
}

87 88 89 90 91 92 93 94 95 96 97
namespace {

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<std::vector<float>> week_data_all, minute_data_all;
  std::vector<size_t> lod1, lod2, lod3;
  std::vector<std::vector<float>> rnn_link_data, rnn_week_datas,
      rnn_minute_datas;
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
98
  explicit DataRecord(const std::string &path, int batch_size = 1)
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      data.week_data_all.assign(week_data_all.begin() + batch_iter,
                                week_data_all.begin() + batch_end);
      data.minute_data_all.assign(minute_data_all.begin() + batch_iter,
                                  minute_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod1.push_back(0);
      data.lod2.push_back(0);
      data.lod3.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      CHECK(!data.week_data_all.empty());
      CHECK(!data.minute_data_all.empty());
      CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size());
      CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size());
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
        }
        data.rnn_week_datas.push_back(data.week_data_all[j]);
        data.rnn_minute_datas.push_back(data.minute_data_all[j]);
        // calculate lod
        data.lod1.push_back(data.lod1.back() +
                            data.link_step_data_all[j].size());
        data.lod3.push_back(data.lod3.back() + 1);
        for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) {
          data.lod2.push_back(data.lod2.back() +
                              data.link_step_data_all[j].size());
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      std::vector<std::vector<float>> link_step_data;
      std::vector<std::string> link_datas;
      split(data[0], '|', &link_datas);
      for (auto &step_data : link_datas) {
        std::vector<float> tmp;
        split_to_float(step_data, ',', &tmp);
        link_step_data.push_back(tmp);
      }
      // load week data
      std::vector<float> week_data;
      split_to_float(data[2], ',', &week_data);
      // load minute data
      std::vector<float> minute_data;
      split_to_float(data[1], ',', &minute_data);
      link_step_data_all.push_back(std::move(link_step_data));
      week_data_all.push_back(std::move(week_data));
      minute_data_all.push_back(std::move(minute_data));
    }
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor,
      week_tensor, minute_tensor;
  lod_attention_tensor.name = "data_lod_attention";
  init_zero_tensor.name = "cell_init";
  lod_tensor_tensor.name = "data";
  week_tensor.name = "week";
  minute_tensor.name = "minute";
  auto one_batch = data->NextBatch();
179 180 181
  std::vector<int> rnn_link_data_shape(
      {static_cast<int>(one_batch.rnn_link_data.size()),
       static_cast<int>(one_batch.rnn_link_data.front().size())});
182 183 184 185 186 187
  lod_attention_tensor.shape.assign({1, 2});
  lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2});
  init_zero_tensor.shape.assign({batch_size, 15});
  init_zero_tensor.lod.assign({one_batch.lod3});
  lod_tensor_tensor.shape = rnn_link_data_shape;
  lod_tensor_tensor.lod.assign({one_batch.lod1});
188 189 190 191
  // clang-format off
  week_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_week_datas.size()),
       static_cast<int>(one_batch.rnn_week_datas.front().size())});
192
  week_tensor.lod.assign({one_batch.lod3});
193 194 195
  minute_tensor.shape.assign(
      {static_cast<int>(one_batch.rnn_minute_datas.size()),
       static_cast<int>(one_batch.rnn_minute_datas.front().size())});
196
  minute_tensor.lod.assign({one_batch.lod3});
197
  // clang-format on
198
  // assign data
L
luotao1 已提交
199 200
  TensorAssignData<float>(&lod_attention_tensor,
                          std::vector<std::vector<float>>({{0, 0}}));
201
  std::vector<float> tmp_zeros(batch_size * 15, 0.);
L
luotao1 已提交
202 203 204 205
  TensorAssignData<float>(&init_zero_tensor, {tmp_zeros});
  TensorAssignData<float>(&lod_tensor_tensor, one_batch.rnn_link_data);
  TensorAssignData<float>(&week_tensor, one_batch.rnn_week_datas);
  TensorAssignData<float>(&minute_tensor, one_batch.rnn_minute_datas);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  // Set inputs.
  auto init_zero_tensor1 = init_zero_tensor;
  init_zero_tensor1.name = "hidden_init";
  input_slots->assign({week_tensor, init_zero_tensor, minute_tensor,
                       init_zero_tensor1, lod_attention_tensor,
                       lod_tensor_tensor});
  for (auto &tensor : *input_slots) {
    tensor.dtype = PaddleDType::FLOAT32;
  }
}

std::string DescribeTensor(const PaddleTensor &tensor) {
  std::stringstream os;
  os << "Tensor [" << tensor.name << "]\n";
  os << " - type: ";
  switch (tensor.dtype) {
    case PaddleDType::FLOAT32:
      os << "float32";
      break;
    case PaddleDType::INT64:
      os << "int64";
      break;
    default:
      os << "unset";
  }
  os << '\n';

  os << " - shape: " << to_string(tensor.shape) << '\n';
  os << " - lod: ";
  for (auto &l : tensor.lod) {
    os << to_string(l) << "; ";
  }
  os << "\n";
  os << " - data: ";

241 242 243
  int dim = std::accumulate(tensor.shape.begin(), tensor.shape.end(), 1,
                            [](int a, int b) { return a * b; });
  for (int i = 0; i < dim; i++) {
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    os << static_cast<float *>(tensor.data.data())[i] << " ";
  }
  os << '\n';
  return os.str();
}

}  // namespace

const float ditu_rnn_target_data[] = {
    104.711, 11.2431, 1.35422, 0,       0,       0,       0,       0,
    27.7039, 1.41486, 7.09526, 0,       0,       0,       0,       0,
    7.6481,  6.5324,  56.383,  2.88018, 8.92918, 132.007, 4.27429, 2.02934,
    14.1727, 10.7461, 25.0616, 16.0197, 14.4163, 16.9199, 6.75517, 0,
    80.0249, 4.77739, 0,       0,       0,       0,       0,       0,
    47.5643, 2.67029, 8.76252, 0,       0,       0,       0,       0,
    51.8822, 4.4411,  0,       0,       0,       0,       0,       0,
    10.7286, 12.0595, 10.6672, 0,       0,       0,       0,       0,
    93.5771, 3.84641, 0,       0,       0,       0,       0,       0,
    169.426, 0,       0,       0,       0,       0,       0,       0};
// Test with a really complicate model.
void TestDituRNNPrediction(const std::string &model_path,
                           const std::string &data_path, int batch_size,
                           bool use_analysis, bool activate_ir,
                           int num_times = 1) {
  NativeConfig config;
269 270
  config.prog_file = FLAGS_infer_ditu_rnn_model + "/__model__";
  config.param_file = FLAGS_infer_ditu_rnn_model + "/param";
271 272 273 274
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;

275
  auto base_predictor =
276
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
277 278
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(config);
279 280 281 282
  std::vector<PaddleTensor> input_slots;
  DataRecord data(data_path, batch_size);
  // Prepare inputs.
  PrepareInputs(&input_slots, &data, batch_size);
283 284 285
  std::vector<PaddleTensor> outputs, base_outputs;

  base_predictor->Run(input_slots, &base_outputs);
286 287 288 289 290 291

  Timer timer;
  timer.tic();
  for (int i = 0; i < num_times; i++) {
    predictor->Run(input_slots, &outputs);
  }
292 293 294 295
  LOG(INFO) << "===========profile result===========";
  LOG(INFO) << "batch_size: " << batch_size << ", repeat: " << num_times
            << ", latency: " << timer.toc() / num_times << "ms";
  LOG(INFO) << "=====================================";
296

297 298 299 300 301
  PADDLE_ENFORCE_GT(outputs.size(), 0);
  PADDLE_ENFORCE_EQ(outputs.size(), base_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &base_out = base_outputs[i];
302 303
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                  [](int a, int b) { return a * b; });
304 305 306 307
    size_t size1 = std::accumulate(base_out.shape.begin(), base_out.shape.end(),
                                   1, [](int a, int b) { return a * b; });
    PADDLE_ENFORCE_EQ(size, size1);
    PADDLE_ENFORCE_GT(size, 0);
308
    float *data = static_cast<float *>(out.data.data());
309 310 311
    float *base_data = static_cast<float *>(base_out.data.data());
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(data[i], base_data[i], 1e-3);
312 313 314 315 316 317 318
    }
  }
}

// Directly infer with the original model.
TEST(Analyzer, DituRNN_without_analysis) {
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
319
                        FLAGS_batch_size, false, false, FLAGS_repeat);
320 321 322 323 324 325 326
}

// Inference with the original model with the analysis turned on, the analysis
// module will transform the program to a data flow graph.
TEST(Analyzer, DituRNN_with_analysis) {
  LOG(INFO) << "ditu rnn with analysis";
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
327
                        FLAGS_batch_size, true, false, FLAGS_repeat);
328 329 330 331 332 333
}

// Inference with analysis and IR. The IR module will fuse some large kernels.
TEST(Analyzer, DituRNN_with_analysis_with_IR) {
  LOG(INFO) << "ditu rnn with analysis and IR fuse";
  TestDituRNNPrediction(FLAGS_infer_ditu_rnn_model, FLAGS_infer_ditu_rnn_data,
334
                        FLAGS_batch_size, true, true, FLAGS_repeat);
335 336
}

337 338 339
}  // namespace analysis
}  // namespace inference
}  // namespace paddle
340 341

USE_PASS(fc_fuse_pass);
342 343
USE_PASS(seq_concat_fc_fuse_pass);
USE_PASS(fc_lstm_fuse_pass);
344 345
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);
346
USE_PASS(attention_lstm_fuse_pass);