fused_gemm_epilogue_op.cu 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
18
#include "paddle/fluid/operators/fused/fused_gemm_epilogue_op.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#include "paddle/fluid/platform/dynload/cublasLt.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FusedGemmEpilogueKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* bias = ctx.Input<Tensor>("Bias");

    Tensor* out = ctx.Output<Tensor>("Out");
    Tensor* reserve_space = ctx.Output<Tensor>("ReserveSpace");

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

    std::string activation = ctx.Attr<std::string>("activation");
    bool enable_auxiliary = reserve_space == nullptr ? false : true;

    out->mutable_data<T>(ctx.GetPlace());
    auto* out_data = out->data<T>();

    auto x_mat_dims =
        phi::flatten_to_2d(x->dims(), trans_x ? 1 : x->dims().size() - 1);
    int64_t M = trans_x ? x_mat_dims[1] : x_mat_dims[0];
    int64_t K = trans_y ? y->dims()[1] : y->dims()[0];
    int64_t N = trans_y ? y->dims()[0] : y->dims()[1];

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtMatmulDesc_t operation_desc = NULL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
        &operation_desc, compute_type, scale_type));
    cublasOperation_t transx = trans_x ? CUBLAS_OP_T : CUBLAS_OP_N;
    cublasOperation_t transy = trans_y ? CUBLAS_OP_T : CUBLAS_OP_N;
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
            operation_desc, CUBLASLT_MATMUL_DESC_TRANSB, &transx,
            sizeof(transx)));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
            operation_desc, CUBLASLT_MATMUL_DESC_TRANSA, &transy,
            sizeof(transy)));

    cublasLtEpilogue_t epiloque_func =
        get_epilogue_type_(activation, enable_auxiliary);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
            operation_desc, CUBLASLT_MATMUL_DESC_EPILOGUE, &epiloque_func,
            sizeof(epiloque_func)));
    const T* bias_data = bias->data<T>();
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescSetAttribute(
            operation_desc, CUBLASLT_MATMUL_DESC_BIAS_POINTER, &bias_data,
            sizeof(bias_data)));

    if (enable_auxiliary && activation != "none") {
      size_t reserve_space_size = 0;
      if (activation == "relu") {
        // Count in bits.
        reserve_space_size = phi::product(out->dims()) / 8;
      } else {
        reserve_space_size = phi::product(out->dims()) * sizeof(T);
      }
      reserve_space->mutable_data(ctx.GetPlace(), out->type(),
                                  reserve_space_size);
      void* aux_data = reinterpret_cast<void*>(reserve_space->data<T>());

      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              operation_desc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
              &aux_data, sizeof(aux_data)));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              operation_desc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &N,
              sizeof(N)));
    }

    cublasLtMatrixLayout_t x_desc = NULL, y_desc = NULL, out_desc = NULL;
    if (trans_x)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, M, K, M));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, K, M, K));
    if (trans_y)
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, K, N, K));
    else
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, N, K, N));
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
        &out_desc, mat_type, N, M, N));

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
    size_t workspace_size = 4 * 1024 * 1024;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    cudaStream_t stream = dev_ctx.stream();
    memory::allocation::AllocationPtr workspace =
        memory::Alloc(dev_ctx, workspace_size);

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

149 150 151 152 153 154 155
    const auto* y_data = y->data<T>();
    const auto* x_data = x->data<T>();

    cublasLtMatmulAlgo_t algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(
        lt_handle, operation_desc, y_desc, x_desc, out_desc, alpha, beta,
        y_data, x_data, out_data, stream, workspace->ptr(), workspace_size);

156
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmul(
157 158 159 160 161 162 163 164 165 166 167 168
        lt_handle, operation_desc, alpha, y_data, y_desc, x_data, x_desc, beta,
        out_data, out_desc, out_data, out_desc, &algo, workspace->ptr(),
        workspace_size, stream));

    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatmulDescDestroy(operation_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(y_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(x_desc));
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(out_desc));
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(const std::string& activation,
                                               bool enable_auxiliary) {
    if (activation == "relu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_RELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_RELU_BIAS;
    } else if (activation == "gelu") {
      return enable_auxiliary ? CUBLASLT_EPILOGUE_GELU_AUX_BIAS
                              : CUBLASLT_EPILOGUE_GELU_BIAS;
    } else if (activation == "none") {
      return CUBLASLT_EPILOGUE_BIAS;
    } else {
      PADDLE_ENFORCE_EQ(
          true, false,
          platform::errors::InvalidArgument(
              "The activation attribute of fused_gemm_epilogue op should be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation=%s.",
              activation));
    }
  }
};

template <typename DeviceContext, typename T>
class FusedGemmEpilogueGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    const Tensor* dout = ctx.Input<Tensor>("DOut");
    const Tensor* x = ctx.Input<Tensor>("X");
    const Tensor* y = ctx.Input<Tensor>("Y");
    const Tensor* reserve_space = ctx.Input<Tensor>("ReserveSpace");

    Tensor* dx = ctx.Output<Tensor>("DX");
    Tensor* dy = ctx.Output<Tensor>("DY");
    Tensor* dbias = ctx.Output<Tensor>("DBias");

    std::string activation_grad = ctx.Attr<std::string>("activation_grad");

    auto dout_mat_dims =
        phi::flatten_to_2d(dout->dims(), dout->dims().size() - 1);
    auto x_mat_dims = phi::flatten_to_2d(x->dims(), x->dims().size() - 1);

    int64_t M = x_mat_dims[0];
    int64_t K = y->dims()[0];
    int64_t N = y->dims()[1];

    cudaDataType_t mat_type = CUDA_R_32F;
    cudaDataType_t scale_type = CUDA_R_32F;
    cublasComputeType_t compute_type = CUBLAS_COMPUTE_32F;
    if (std::is_same<T, paddle::platform::float16>::value) {
      mat_type = CUDA_R_16F;
    }
    if (std::is_same<T, double>::value) {
      mat_type = CUDA_R_64F;
      scale_type = CUDA_R_64F;
      compute_type = CUBLAS_COMPUTE_64F;
    }

    cublasLtHandle_t lt_handle = dev_ctx.cublaslt_handle();
    size_t workspace_size = 4 * 1024 * 1024;
    cudaStream_t stream = dev_ctx.stream();

    double alpha64 = 1.0, beta64 = 0.0;
    float alpha32 = 1.0f, beta32 = 0.0f;
    void *alpha = nullptr, *beta = nullptr;
    if (std::is_same<T, double>::value) {
      alpha = &alpha64;
      beta = &beta64;
    } else {
      alpha = &alpha32;
      beta = &beta32;
    }

    cublasOperation_t trans_dout = CUBLAS_OP_N;
    cublasLtMatrixLayout_t dout_desc = NULL;
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
        &dout_desc, mat_type, N, M, N));

    if (dx) {
      cublasLtMatmulDesc_t dx_operation_desc = NULL;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dx_operation_desc, compute_type, scale_type));
      cublasOperation_t trans_y = CUBLAS_OP_T;
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              dx_operation_desc, CUBLASLT_MATMUL_DESC_TRANSB, &trans_dout,
              sizeof(trans_dout)));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              dx_operation_desc, CUBLASLT_MATMUL_DESC_TRANSA, &trans_y,
              sizeof(trans_y)));
      cublasLtEpilogue_t epiloque_func_for_dx =
          get_epilogue_type_(activation_grad);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              dx_operation_desc, CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dx, sizeof(epiloque_func_for_dx)));

      if (activation_grad != "none") {
        auto* aux_data = reserve_space->data<T>();
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
                dx_operation_desc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER,
                &aux_data, sizeof(aux_data)));
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
279 280
                dx_operation_desc, CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_LD, &K,
                sizeof(K)));
281 282 283 284 285 286 287 288 289 290 291 292 293
      }

      cublasLtMatrixLayout_t y_desc = NULL, dx_desc = NULL;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &y_desc, mat_type, N, K, N));
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dx_desc, mat_type, K, M, K));

      memory::allocation::AllocationPtr dx_workspace =
          memory::Alloc(dev_ctx, workspace_size);

      dx->mutable_data<T>(ctx.GetPlace());
      auto* dx_data = dx->data<T>();
294 295 296 297 298 299 300 301
      const auto* y_data = y->data<T>();
      const auto* dout_data = dout->data<T>();

      cublasLtMatmulAlgo_t algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(
          lt_handle, dx_operation_desc, y_desc, dout_desc, dx_desc, alpha, beta,
          y_data, dout_data, dx_data, stream, dx_workspace->ptr(),
          workspace_size);

302 303 304
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmul(
          lt_handle, dx_operation_desc, alpha, y->data<T>(), y_desc,
          dout->data<T>(), dout_desc, beta, dx_data, dx_desc, dx_data, dx_desc,
305 306 307 308 309 310 311
          &algo, dx_workspace->ptr(), workspace_size, stream));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescDestroy(dx_operation_desc));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatrixLayoutDestroy(y_desc));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatrixLayoutDestroy(dx_desc));
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    }

    if (dy) {
      cublasLtMatmulDesc_t dy_operation_desc = NULL;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmulDescCreate(
          &dy_operation_desc, compute_type, scale_type));
      cublasOperation_t trans_x = CUBLAS_OP_T;
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              dy_operation_desc, CUBLASLT_MATMUL_DESC_TRANSA, &trans_dout,
              sizeof(trans_dout)));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              dy_operation_desc, CUBLASLT_MATMUL_DESC_TRANSB, &trans_x,
              sizeof(trans_x)));
      cublasLtEpilogue_t epiloque_func_for_dy = dbias == nullptr
                                                    ? CUBLASLT_EPILOGUE_DEFAULT
                                                    : CUBLASLT_EPILOGUE_BGRADA;
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescSetAttribute(
              dy_operation_desc, CUBLASLT_MATMUL_DESC_EPILOGUE,
              &epiloque_func_for_dy, sizeof(epiloque_func_for_dy)));

      if (dbias) {
        dbias->mutable_data<T>(ctx.GetPlace());
        auto* dbias_data = dbias->data<T>();
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cublasLtMatmulDescSetAttribute(
                dy_operation_desc, CUBLASLT_MATMUL_DESC_BIAS_POINTER,
                &dbias_data, sizeof(dbias_data)));
      }

      cublasLtMatrixLayout_t x_desc = NULL, dy_desc = NULL;
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &x_desc, mat_type, K, M, K));
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatrixLayoutCreate(
          &dy_desc, mat_type, N, K, N));

      memory::allocation::AllocationPtr dy_workspace =
          memory::Alloc(dev_ctx, workspace_size);

      dy->mutable_data<T>(ctx.GetPlace());
      auto* dy_data = dy->data<T>();
355 356 357 358 359 360 361 362
      const auto* dout_data = dout->data<T>();
      const auto* x_data = x->data<T>();

      cublasLtMatmulAlgo_t algo = GemmEpilogueAlgoCache::Instance().GetGemmAlgo(
          lt_handle, dy_operation_desc, dout_desc, x_desc, dy_desc, alpha, beta,
          dout_data, x_data, dy_data, stream, dy_workspace->ptr(),
          workspace_size);

363
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cublasLtMatmul(
364 365
          lt_handle, dy_operation_desc, alpha, dout_data, dout_desc, x_data,
          x_desc, beta, dy_data, dy_desc, dy_data, dy_desc, &algo,
366
          dy_workspace->ptr(), workspace_size, stream));
367 368 369 370 371 372
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatmulDescDestroy(dy_operation_desc));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatrixLayoutDestroy(x_desc));
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cublasLtMatrixLayoutDestroy(dy_desc));
373
    }
374 375
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cublasLtMatrixLayoutDestroy(dout_desc));
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
  }

 private:
  static cublasLtEpilogue_t get_epilogue_type_(
      const std::string& activation_grad) {
    if (activation_grad == "relu_grad") {
      return CUBLASLT_EPILOGUE_DRELU;
    } else if (activation_grad == "gelu_grad") {
      return CUBLASLT_EPILOGUE_DGELU;
    } else if (activation_grad == "none") {
      return CUBLASLT_EPILOGUE_DEFAULT;
    } else {
      PADDLE_ENFORCE_EQ(
          true, false,
          platform::errors::InvalidArgument(
              "The activation_grad attribute of fused_gemm_epilogue op should "
              "be"
              " one of {\"none\", \"relu\", \"gelu\"}. But received %s."
              "But received activation_grad=%s.",
              activation_grad));
    }
  }
};

}  // namespace operators
}  // namespace paddle

#if CUDA_VERSION >= 11060
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue,
    ops::FusedGemmEpilogueKernel<paddle::platform::CUDADeviceContext, float>,
    ops::FusedGemmEpilogueKernel<paddle::platform::CUDADeviceContext, double>,
    ops::FusedGemmEpilogueKernel<paddle::platform::CUDADeviceContext,
                                 paddle::platform::float16>);

REGISTER_OP_CUDA_KERNEL(
    fused_gemm_epilogue_grad,
    ops::FusedGemmEpilogueGradKernel<paddle::platform::CUDADeviceContext,
                                     float>,
    ops::FusedGemmEpilogueGradKernel<paddle::platform::CUDADeviceContext,
                                     double>,
    ops::FusedGemmEpilogueGradKernel<paddle::platform::CUDADeviceContext,
                                     paddle::platform::float16>);
#endif