op_converter.h 27.6 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
21

L
Luo Tao 已提交
22
#include "paddle/fluid/framework/block_desc.h"
23
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/framework/scope.h"
25
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
26
#include "paddle/fluid/inference/tensorrt/engine.h"
27
#include "paddle/fluid/inference/tensorrt/helper.h"
28
#include "paddle/fluid/inference/tensorrt/op_teller.h"
L
Luo Tao 已提交
29
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
41

42 43
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
44 45
                          const framework::Scope& scope,
                          bool test_mode = false) {}
46

47 48
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
49 50
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
51 52
                 const framework::Scope& scope,
                 TensorRTEngine* engine,
53 54
                 bool test_mode = false,
                 const framework::proto::BlockDesc* block = nullptr) {
Y
Yan Chunwei 已提交
55
    framework::OpDesc op_desc(op, nullptr);
56 57

    OpConverter* it{nullptr};
L
Luo Tao 已提交
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    auto op_converter_type_map = OpTeller::Global().GetOpConverterTypeMap();
    switch (op_converter_type_map.at(op_desc.Type())) {
      case OpConverterType::Default:
        if (op_desc.Type() == "mul") {
          PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                            1UL,
                            platform::errors::InvalidArgument(
                                "The input op mul's Input(\"Y\")."
                                "size() should equal to 1, but reveceid "
                                "Input(\"Y\").size() = %u.",
                                op_desc.Input("Y").size()));
          std::string Y = op_desc.Input("Y")[0];
          if (parameters.count(Y)) {
            it = Registry<OpConverter>::Global().Lookup("fc");
          }
        }
        if (op_desc.Type().find("elementwise") != std::string::npos) {
          static std::unordered_set<std::string> add_tensor_op_set{
              "add", "mul", "sub", "div", "max", "min", "pow"};
          static std::unordered_set<std::string> add_weight_op_set{
              "add", "mul", "sub", "div", "pow"};
          PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(),
                            1UL,
                            platform::errors::InvalidArgument(
                                "The input op's Input(\"Y\")."
                                "size() should equal to 1, but reveceid "
                                "Input(\"Y\").size() = %u.",
                                op_desc.Input("Y").size()));
          int op_type_len = op_desc.Type().size();
          std::string op_type =
              op_desc.Type().substr(op_type_len - 3, op_type_len);
          std::string Y = op_desc.Input("Y")[0];
          if (parameters.count(Y)) {
            PADDLE_ENFORCE_GT(
                add_weight_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_weight");
            PADDLE_ENFORCE_NOT_NULL(
                it,
                platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
          } else {
            PADDLE_ENFORCE_GT(
                add_tensor_op_set.count(op_type),
                0,
                platform::errors::Unimplemented(
                    "Unsupported elementwise type %s", op_type.c_str()));
            it = Registry<OpConverter>::Global().Lookup("elementwise_" +
                                                        op_type + "_tensor");
          }
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
N
nhzlx 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        if (op_desc.Type() == "depthwise_conv2d") {
          it = Registry<OpConverter>::Global().Lookup("conv2d");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "depthwise_conv2d_transpose") {
          it = Registry<OpConverter>::Global().Lookup("conv2d_transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "transpose2") {
          it = Registry<OpConverter>::Global().Lookup("transpose");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (op_desc.Type() == "flatten2") {
          it = Registry<OpConverter>::Global().Lookup("flatten");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        // reshape2 == reshape
        if (op_desc.Type() == "reshape2") {
          it = Registry<OpConverter>::Global().Lookup("reshape");
          PADDLE_ENFORCE_NOT_NULL(
              it,
              platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
        }
        if (!it) {
          it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
        }
        break;

      case OpConverterType::GenericPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use generic_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("generic_plugin_creater");
        break;

      case OpConverterType::CustomPluginCreater:
        LOG(INFO) << "There is no OpConverter for type " << op_desc.Type()
                  << ", now use custom_plugin_creater!";
        it = Registry<OpConverter>::Global().Lookup("custom_plugin_creater");
        break;

      default:
        CHECK(false) << "no OpConverter for optype " << op_desc.Type();
173
    }
174

S
Shang Zhizhou 已提交
175
    PADDLE_ENFORCE_NOT_NULL(
176 177 178
        it,
        platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                        op_desc.Type()));
179

180
    it->SetEngine(engine);
181
    it->SetBlockDesc(block);
182
    (*it)(op, scope, test_mode);
183

184
    size_t output_num = op_desc.OutputNames().size();
185 186 187
    // only one out settensordynamicRange
    if (op_desc.HasAttr("out_threshold")) {
      float out_scale =
R
Ruibiao Chen 已提交
188
          PADDLE_GET_CONST(float, op_desc.GetAttr("out_threshold"));
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
    // outs settensordynamicRange
    for (size_t i = 0; i < output_num; ++i) {
      if (op_desc.HasAttr("out_" + std::to_string(i) + "_threshold")) {
R
Ruibiao Chen 已提交
211
        float out_scale = PADDLE_GET_CONST(
212 213 214
            float, op_desc.GetAttr("out_" + std::to_string(i) + "_threshold"));
        std::string output_name =
            op_desc.Output(op_desc.OutputNames()[i]).front();
215 216 217 218 219
        auto* output_itensor = engine->GetITensor(output_name);
        engine->SetTensorDynamicRange(output_itensor, out_scale);
        VLOG(1) << "Set out scale = " << out_scale << " for tensor "
                << output_name << ".";
      }
220 221 222 223 224 225 226 227 228 229 230 231
    }

    // quant_dequant_linear support for paddle trt

    std::vector<std::string> inputs_name = op_desc.InputNames();
    std::vector<std::string> outputs_name = op_desc.OutputNames();

    for (size_t i = 0; i < inputs_name.size(); i++) {
      if (op_desc.HasAttr(inputs_name[i])) {
        std::string input_tensor_name = op_desc.Input(inputs_name[i])[0];
        auto* input_itensor = engine->GetITensor(input_tensor_name);
        float input_scale =
R
Ruibiao Chen 已提交
232
            PADDLE_GET_CONST(float, op_desc.GetAttr(inputs_name[i]));
233 234 235 236 237 238 239 240 241 242
        engine->SetTensorDynamicRange(input_itensor, input_scale);
        VLOG(1) << "Set input tensor scale = " << input_scale
                << " for tensor: " << input_tensor_name << ".";
      }
    }
    for (size_t i = 0; i < outputs_name.size(); i++) {
      if (op_desc.HasAttr(outputs_name[i])) {
        std::string output_tensor_name = op_desc.Output(outputs_name[i])[0];
        auto* output_itensor = engine->GetITensor(output_tensor_name);
        float output_scale =
R
Ruibiao Chen 已提交
243
            PADDLE_GET_CONST(float, op_desc.GetAttr(outputs_name[i]));
244 245 246
        engine->SetTensorDynamicRange(output_itensor, output_scale);
        VLOG(1) << "Set output tensor scale = " << output_scale
                << " for tensor: " << output_tensor_name << ".";
247 248
      }
    }
L
Luo Tao 已提交
249 250
  }

Y
Yan Chunwei 已提交
251 252
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
253
  void ConvertBlock(const framework::proto::BlockDesc& block,
254
                    const std::unordered_set<std::string>& parameters,
255 256
                    const framework::Scope& scope,
                    TensorRTEngine* engine) {
N
nhzlx 已提交
257
    std::unique_lock<std::mutex> lk(mut_);
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    for (int i = 0; i < block.ops_size(); i++) {
      SetEngine(engine);
      const auto& op = block.ops(i);
      framework::OpDesc op_desc(op, nullptr);
      framework::Variable* X_v = nullptr;
      std::string X_name;
      // inputs : string -> std::vector<string>
      auto inputs = op_desc.Inputs();
      if (inputs.count("X")) {
        X_name = op_desc.Input("X")[0];
      } else if (inputs.count("Input")) {
        X_name = op_desc.Input("Input")[0];
      } else if (inputs.count("Y")) {
        X_name = op_desc.Input("Y")[0];
      }
      X_v = scope.FindVar(X_name);
      // If this weight is shared between ops, it needn't to be convtered to
      // itensor once again
      if (engine->GetITensorMap()->count(X_name)) {
        continue;
      }
      if (X_v) {
        ConvertWeight2ITensor(scope, X_name);
      }
    }
K
Kexin Zhao 已提交
283
    for (int i = 0; i < block.ops_size(); i++) {
284
      const auto& op = block.ops(i);
285
      ConvertOp(op, parameters, scope, engine, false, &block);
L
Luo Tao 已提交
286
    }
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    for (int i = 0; i < engine->network()->getNbLayers(); i++) {
      auto layer = engine->network()->getLayer(i);
      if (layer->getType() == nvinfer1::LayerType::kSHUFFLE) {
        auto* input_tensor = layer->getInput(0);
        auto* output_tensor = layer->getOutput(0);
        auto output_tensor_name = output_tensor->getName();
        auto input_tensor_name = input_tensor->getName();
        if (engine->DynamicRangeIsSet(input_tensor) &&
            !engine->DynamicRangeIsSet(output_tensor)) {
          float output_scale = engine->GetTensorDynamicRange(input_tensor);
          VLOG(1) << "Set output tensor scale = " << output_scale
                  << " for tensor in TensorRT: " << output_tensor_name << ".";
          engine->SetTensorDynamicRange(output_tensor, output_scale);
        } else {
          VLOG(1) << "Failed to get input tensor scale for tensor in TensorRT: "
                  << input_tensor_name << ".";
        }
      }
    }
L
Luo Tao 已提交
306 307
  }

N
nhzlx 已提交
308
  // The scope  here should be inited with the parameter vars.
309
  void ConvertBlockToTRTEngine(
310 311
      framework::BlockDesc* block_desc,
      const framework::Scope& scope,
312 313
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
314 315
      const std::vector<std::string>& outputs,
      TensorRTEngine* engine) {
316
    engine->InitNetwork();
317
    bool all_dynamic_shape_set = true;
318 319 320
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
321
      PADDLE_ENFORCE_NOT_NULL(
322 323 324
          var,
          platform::errors::NotFound("no variable called %s in block.",
                                     input.c_str()));
S
Shang Zhizhou 已提交
325
      PADDLE_ENFORCE_EQ(
326 327
          var->GetType(),
          FluidDT::VarType_Type_LOD_TENSOR,
S
Shang Zhizhou 已提交
328 329
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
330
      auto var_shape = var->GetShape();
331 332 333 334 335 336
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
337 338 339 340 341 342 343
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
344
        std::vector<int64_t> input_shape;
345 346
        // input_shape.push_back(-1);
        for (size_t i = 0; i < ranks; i++) {
347 348 349 350 351
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
352 353
            PADDLE_ENFORCE_EQ(min_input_shape[i],
                              optim_input_shape[i],
354 355 356 357 358 359
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
360 361 362
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
363 364 365 366
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
367 368 369
            input,
            FluidDataType2TRT(
                var->Proto()->type().lod_tensor().tensor().data_type()),
370
            Vec2TRT_Dims(var_shape, input));
371 372
        VLOG(1) << "Set trt input [" << input << "] type is "
                << var->Proto()->type().lod_tensor().tensor().data_type();
373
      }
374
    }
375 376
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set,
                      true,
377 378 379
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
380 381 382 383 384 385
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
386
    engine->ClearWeights();
387 388
  }

Z
zhoutianzi666 已提交
389 390
  // rank(result) = rank(input)
  nvinfer1::ITensor* Gather(nvinfer1::ITensor* input,
391 392
                            const std::vector<int32_t> indices,
                            int axis = 0) {
Z
zhoutianzi666 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    auto* indices_tensor = Add1DConstantLayer(indices, " ");
    auto* result =
        TRT_ENGINE_ADD_LAYER(engine_, Gather, *input, *indices_tensor, axis)
            ->getOutput(0);
    return result;
  }

  // paddle allows negative index
  // for axis length = 5, paddle allows [-5, 4]
  nvinfer1::ITensor* FixNegIndices(nvinfer1::ITensor* input_shape,
                                   nvinfer1::ITensor* indices) {
    int rank = input_shape->getDimensions().nbDims;
    std::vector<int32_t> zero = std::vector<int32_t>(rank, 0);
    std::vector<int32_t> minus_one = std::vector<int32_t>(rank, -1);
    nvinfer1::ITensor* zero_tensor = Add1DConstantLayer(zero);
    nvinfer1::ITensor* minus_one_tensor = Add1DConstantLayer(minus_one);
    // -1, 0
    auto* sign = Max(Min(indices, zero_tensor), minus_one_tensor);
    return Sub(indices, Prod(sign, input_shape));
  }

  nvinfer1::ITensor* Shape(nvinfer1::ITensor* input) {
    return TRT_ENGINE_ADD_LAYER(engine_, Shape, *input)->getOutput(0);
  }

  // Concat not make rank changed
  nvinfer1::ITensor* Concat(const std::vector<nvinfer1::ITensor*>& inputs,
                            int axis = 0) {
421 422
    auto* layer = TRT_ENGINE_ADD_LAYER(
        engine_, Concatenation, inputs.data(), inputs.size());
Z
zhoutianzi666 已提交
423 424 425 426 427 428 429
    if (axis != 0) layer->setAxis(axis);
    nvinfer1::ITensor* c = layer->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sum(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
430 431
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUM)
Z
zhoutianzi666 已提交
432 433 434 435 436 437
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Prod(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
438 439
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kPROD)
Z
zhoutianzi666 已提交
440 441 442 443 444 445
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Min(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
446 447
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMIN)
Z
zhoutianzi666 已提交
448 449 450 451 452 453
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Max(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
454 455
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kMAX)
Z
zhoutianzi666 已提交
456 457 458 459 460 461
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Sub(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
462 463
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kSUB)
Z
zhoutianzi666 已提交
464 465 466 467 468 469
            ->getOutput(0);
    return c;
  }

  nvinfer1::ITensor* Div(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
470 471
        TRT_ENGINE_ADD_LAYER(
            engine_, ElementWise, *a, *b, nvinfer1::ElementWiseOperation::kDIV)
Z
zhoutianzi666 已提交
472 473 474 475
            ->getOutput(0);
    return c;
  }

476 477 478 479 480 481 482 483 484 485 486
  nvinfer1::ITensor* FloorDiv(nvinfer1::ITensor* a, nvinfer1::ITensor* b) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_,
                             ElementWise,
                             *a,
                             *b,
                             nvinfer1::ElementWiseOperation::kFLOOR_DIV)
            ->getOutput(0);
    return c;
  }

Z
zhoutianzi666 已提交
487 488 489 490 491 492 493 494 495
  nvinfer1::ITensor* Act(nvinfer1::ITensor* a,
                         nvinfer1::ActivationType act_type) {
    nvinfer1::ITensor* c =
        TRT_ENGINE_ADD_LAYER(engine_, Activation, *a, act_type)->getOutput(0);
    return c;
  }

  // Get element tensor of 1D shape tensor
  nvinfer1::ITensor* GetEleTensorOfShape(nvinfer1::ITensor* shape_tensor,
496 497
                                         int index,
                                         bool is_scalar = false) {
Z
zhoutianzi666 已提交
498
    auto* tensor =
499 500 501 502 503
        TRT_ENGINE_ADD_LAYER(engine_,
                             Gather,
                             *shape_tensor,
                             *Add1DConstantLayer(index, " ", is_scalar),
                             0)
Z
zhoutianzi666 已提交
504 505 506
            ->getOutput(0);
    return tensor;
  }
507 508 509
  template <typename T>
  // Create and add Multi-D constant float/int32 layer
  nvinfer1::ITensor* AddConstantLayer(const T* data,
510 511 512 513 514 515 516 517 518 519
                                      nvinfer1::Dims shape,
                                      const std::string& weight_name = "") {
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

520
    int data_size = std::accumulate(
521
        shape.d, shape.d + shape.nbDims, 1, std::multiplies<int>());
522
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
Z
zhoutianzi666 已提交
523
    tmp_tensor->Resize({data_size});
524
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
525 526 527 528 529
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

530 531 532 533 534 535
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
    }

    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
536 537
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
538

Z
zhoutianzi666 已提交
539
    auto const_layer =
540
        TRT_ENGINE_ADD_LAYER(engine_, Constant, shape, weight.get());
Z
zhoutianzi666 已提交
541 542 543
    return const_layer->getOutput(0);
  }

544 545 546
  // Create and add 1D constant float/int32 layer
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(const std::vector<T>& data,
Z
zhoutianzi666 已提交
547 548
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
549 550 551 552 553 554 555 556
    if (!(std::is_same<T, float>::value ||
          std::is_same<T, platform::float16>::value ||
          std::is_same<T, int32_t>::value)) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unsupported data type (%s) for TensorRT AddConstantLayer, only "
          "supports float, half or int32_t."));
    }

Z
zhoutianzi666 已提交
557 558 559
    std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
    int data_size = data.size();
    tmp_tensor->Resize({data_size});
560
    auto* tmp_data = tmp_tensor->mutable_data<T>(platform::CPUPlace());
Z
zhoutianzi666 已提交
561 562 563 564 565
    for (int i = 0; i < data_size; i++) {
      tmp_data[i] = data[i];
    }
    engine_->SetWeights(weight_name, std::move(tmp_tensor));

566 567 568
    nvinfer1::DataType trt_dtype = nvinfer1::DataType::kFLOAT;
    if (std::is_integral<T>::value) {
      trt_dtype = nvinfer1::DataType::kINT32;
Z
zhoutianzi666 已提交
569 570
    }

571
    TensorRTEngine::Weight weight{trt_dtype,
Z
zhoutianzi666 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
                                  static_cast<void*>(tmp_data),
                                  static_cast<size_t>(data_size)};
    nvinfer1::Dims input_shape;
    input_shape.nbDims = scalar ? 0 : 1;
    input_shape.d[0] = data_size;
    auto const_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, input_shape, weight.get());
    return const_layer->getOutput(0);
  }

  nvinfer1::ITensor* Add1DConstantLayer(nvinfer1::Dims data,
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
    std::vector<int> tmp_data;
    for (int i = 0; i < data.nbDims; i++) tmp_data.push_back(data.d[i]);
    return Add1DConstantLayer(tmp_data, weight_name, scalar);
  }

590 591
  template <typename T>
  nvinfer1::ITensor* Add1DConstantLayer(T data,
Z
zhoutianzi666 已提交
592 593
                                        const std::string& weight_name = "",
                                        bool scalar = false) {
594 595 596
    std::vector<T> input_data;
    input_data.push_back(data);
    return Add1DConstantLayer(input_data, weight_name, scalar);
Z
zhoutianzi666 已提交
597 598
  }

599 600 601 602 603 604
  // For cases when input is not middle-tensor , but persistable tensor
  // you should call this.
  nvinfer1::ITensor* ConvertWeight2ITensor(const framework::Scope& scope,
                                           const std::string& name) {
    auto* var_v = scope.FindVar(name);
    auto* var_t = var_v->GetMutable<framework::LoDTensor>();
605 606
    auto weight = engine_->GetTrtWeight(name, *var_t);

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    // Now we have create weights, then we need create a itensor
    auto var_dims = var_t->dims();
    nvinfer1::Dims trt_in_shape;
    trt_in_shape.nbDims = var_t->dims().size();
    for (int64_t i = 0; i < trt_in_shape.nbDims; i++) {
      trt_in_shape.d[i] = var_dims[i];
    }
    // In fact , this is not always right, because we can't determine if the 0th
    // dimension is batch. Just for run chenqu's model
    if (!engine_->with_dynamic_shape()) {
      trt_in_shape.nbDims--;
      for (int i = 0; i < trt_in_shape.nbDims; i++) {
        trt_in_shape.d[i] = trt_in_shape.d[i + 1];
      }
    }
    nvinfer1::ILayer* layer =
        TRT_ENGINE_ADD_LAYER(engine_, Constant, trt_in_shape, weight.get());
    engine_->SetITensor(name, layer->getOutput(0));
    return layer->getOutput(0);
  }

628
  void RreplenishLayerAndOutput(
629 630
      nvinfer1::ILayer* layer,
      const std::string& layer_type,
631 632 633
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
Z
zhoutianzi666 已提交
634
    std::string layer_name = layer_type + " (Output: ";
635 636 637 638 639 640
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
Z
zhoutianzi666 已提交
641 642
      layer_name += output_tensor_names[i];
      if (i != num_out - 1) layer_name += ", ";
643
    }
Z
zhoutianzi666 已提交
644
    layer->setName((layer_name + ")").c_str());
645
  }
L
Luo Tao 已提交
646 647
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

648 649 650 651
  void SetBlockDesc(const framework::proto::BlockDesc* block) {
    block_ = block;
  }

L
Luo Tao 已提交
652 653
  virtual ~OpConverter() {}

L
Luo Tao 已提交
654 655
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};
656 657
  // BlockDesc
  const framework::proto::BlockDesc* block_{nullptr};
L
Luo Tao 已提交
658

659 660 661
 protected:
  bool test_mode_;

L
Luo Tao 已提交
662 663 664 665 666
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
667
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
668
  std::mutex mut_;
L
Luo Tao 已提交
669 670
};

671 672 673 674
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

675 676 677
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
678 679 680
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
681 682 683 684 685 686 687 688
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

689 690 691
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
692
      TouchConverterRegister_##op_type__();