test_cuda_random_seed.py 5.6 KB
Newer Older
Y
yaoxuefeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test cloud role maker."""

from __future__ import print_function
import os
import unittest
import paddle.fluid.generator as generator

import time  # temp for debug
import paddle.fluid as fluid
import numpy as np
import paddle
import paddle.fluid.core as core


class TestGeneratorSeed(unittest.TestCase):
    """
    Test cases for cpu generator seed.
    """

    def test_gen_dropout_dygraph(self):
C
cnn 已提交
34
        gen = paddle.seed(12343)
Y
yaoxuefeng 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

        fluid.enable_dygraph()

        gen.manual_seed(111111111)
        st = paddle.get_cuda_rng_state()

        x = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x_again = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x_third = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        print("x: {}".format(x.numpy()))
        print("x_again: {}".format(x_again.numpy()))
        x = x + x_again + x_third
        y = fluid.layers.dropout(x, 0.5)

        paddle.set_cuda_rng_state(st)

        x1 = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x1_again = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x1_third = fluid.layers.uniform_random(
            [2, 10], dtype="float32", min=0.0, max=1.0)
        x1 = x1 + x1_again + x1_third
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
            self.assertTrue(np.allclose(y_np, y1_np))

    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

C
cnn 已提交
73
        paddle.seed(12312321111)
Y
yaoxuefeng 已提交
74 75 76 77 78
        x = fluid.layers.gaussian_random([120], dtype="float32")
        st1 = paddle.get_cuda_rng_state()
        x1 = fluid.layers.gaussian_random([120], dtype="float32")
        paddle.set_cuda_rng_state(st1)
        x2 = fluid.layers.gaussian_random([120], dtype="float32")
C
cnn 已提交
79
        paddle.seed(12312321111)
Y
yaoxuefeng 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        x3 = fluid.layers.gaussian_random([120], dtype="float32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_generator_randint_dygraph(self):
        """Test Generator seed."""

        fluid.enable_dygraph()

96
        paddle.seed(12312321111)
Y
yaoxuefeng 已提交
97
        x = paddle.randint(low=10, shape=[10], dtype="int32")
98
        st1 = paddle.get_cuda_rng_state()
Y
yaoxuefeng 已提交
99
        x1 = paddle.randint(low=10, shape=[10], dtype="int32")
100
        paddle.set_cuda_rng_state(st1)
Y
yaoxuefeng 已提交
101
        x2 = paddle.randint(low=10, shape=[10], dtype="int32")
C
cnn 已提交
102
        paddle.seed(12312321111)
Y
yaoxuefeng 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115
        x3 = paddle.randint(low=10, shape=[10], dtype="int32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> randint dygraph >>>>>>>")
            self.assertTrue(np.allclose(x_np, x3_np))

    def test_gen_TruncatedNormal_initializer(self):
        fluid.disable_dygraph()

C
cnn 已提交
116
        gen = paddle.seed(123123143)
Y
yaoxuefeng 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        cur_state = paddle.get_cuda_rng_state()

        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            x = fluid.layers.uniform_random(shape=[2, 10])
            result_1 = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0))
            result_2 = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=2.0))

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(startup_program)
            out1 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

C
cnn 已提交
142
        paddle.seed(123123143)
Y
yaoxuefeng 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
        with fluid.program_guard(train_program, startup_program):
            exe.run(startup_program)
            out2 = exe.run(train_program,
                           feed={},
                           fetch_list=[result_1, result_2])

        out1_res1 = np.array(out1[0])
        out1_res2 = np.array(out1[1])
        out2_res1 = np.array(out2[0])
        out2_res2 = np.array(out2[1])

        if core.is_compiled_with_cuda():
            print(">>>>>>> truncated normal static >>>>>>>")
            self.assertTrue(np.allclose(out1_res1, out2_res1))
            self.assertTrue(np.allclose(out1_res2, out2_res2))
            self.assertTrue(not np.allclose(out1_res2, out1_res1))


if __name__ == "__main__":
    unittest.main()