elementwise_grad_kernel.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/elementwise_grad_kernel.h"
16

17 18 19
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
20
#include "paddle/phi/kernels/cpu/elementwise_grad.h"
21 22
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h"
23

24
namespace phi {
25 26 27 28 29 30 31 32 33 34 35

template <typename T>
void AddGradFunc(const CPUContext& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const DenseTensor& out,
                 const DenseTensor& dout,
                 DenseTensor* dx,
                 DenseTensor* dy,
                 int axis = -1) {
  if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
36
    ElementwiseAddGrad<T>(dev_ctx, x, y, out, dout, dx, dy);
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  } else {
    ElemwiseExplicitGradCompute<T, IdentityGrad<T>, IdentityGrad<T>>(
        dev_ctx,
        x,
        y,
        out,
        dout,
        axis,
        dx,
        dy,
        IdentityGrad<T>(),
        IdentityGrad<T>());
  }
}

template <typename T, typename Context>
void AddGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   const DenseTensor& dout,
                   int axis,
                   DenseTensor* dx,
                   DenseTensor* dy) {
60
  phi::AddGradImpl<T>(dev_ctx, x, y, dout, axis, dx, dy, AddGradFunc<T>);
61 62 63 64 65 66 67 68 69 70
}

template <typename T, typename Context>
void AddDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& y,
                         paddle::optional<const DenseTensor&> ddx,
                         paddle::optional<const DenseTensor&> ddy,
                         const DenseTensor& dout,
                         int axis,
                         DenseTensor* ddout) {
71
  phi::AddDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
72 73 74 75 76 77 78 79 80 81
}

template <typename T, typename Context>
void AddTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& d_ddout,
                         int axis,
                         DenseTensor* d_ddx,
                         DenseTensor* d_ddy) {
82
  phi::AddGradImpl<T>(
83 84 85
      dev_ctx, ddx, ddy, d_ddout, axis, d_ddx, d_ddy, AddGradFunc<T>);
}

86 87 88 89 90 91 92 93 94 95
template <typename T, typename Context>
void SubtractGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dout,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy) {
  // skip out
  auto* out = &dout;
96
  ElementwiseSubGrad<T>(dev_ctx, x, y, *out, dout, dx, dy, axis);
97 98 99 100 101 102 103 104 105 106
}

template <typename T, typename Context>
void SubtractDoubleGradKernel(const Context& dev_ctx,
                              const DenseTensor& y,
                              paddle::optional<const DenseTensor&> ddx,
                              paddle::optional<const DenseTensor&> ddy,
                              const DenseTensor& dout,
                              int axis,
                              DenseTensor* ddout) {
107
  phi::SubtractDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
108 109
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename T, typename Context>
void DivideGradKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      const DenseTensor& out,
                      const DenseTensor& dout,
                      int axis,
                      DenseTensor* dx,
                      DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, DivGradDX<T>, DivGradDY<T>>(
      dev_ctx, x, y, out, dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

124
}  // namespace phi
125

126
PD_REGISTER_KERNEL(add_grad,
127 128
                   CPU,
                   ALL_LAYOUT,
129
                   phi::AddGradKernel,
130 131
                   float,
                   double,
132
                   int16_t,
133 134
                   int,
                   int64_t,
135 136
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
137

138
PD_REGISTER_KERNEL(add_double_grad,
139 140
                   CPU,
                   ALL_LAYOUT,
141
                   phi::AddDoubleGradKernel,
142 143
                   float,
                   double,
144
                   int16_t,
145 146
                   int,
                   int64_t,
147 148
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
149

150
PD_REGISTER_KERNEL(add_triple_grad,
151 152
                   CPU,
                   ALL_LAYOUT,
153
                   phi::AddTripleGradKernel,
154 155
                   float,
                   double,
156
                   int16_t,
157 158
                   int,
                   int64_t,
159 160
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
161

162
PD_REGISTER_KERNEL(subtract_grad,
163 164
                   CPU,
                   ALL_LAYOUT,
165
                   phi::SubtractGradKernel,
166 167
                   float,
                   double,
168
                   int16_t,
169 170
                   int,
                   int64_t,
171
                   phi::dtype::bfloat16,
172 173
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
174

175
PD_REGISTER_KERNEL(subtract_double_grad,
176 177
                   CPU,
                   ALL_LAYOUT,
178
                   phi::SubtractDoubleGradKernel,
179 180
                   float,
                   double,
181
                   int16_t,
182 183
                   int,
                   int64_t,
184
                   phi::dtype::bfloat16,
185 186
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

PD_REGISTER_KERNEL(divide_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   paddle::platform::complex<float>,
                   paddle::platform::complex<double>) {}

PD_REGISTER_KERNEL(divide_double_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideDoubleGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   paddle::platform::complex<float>,
                   paddle::platform::complex<double>) {}