sendrecvop_utils.cc 8.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
Y
Yi Wang 已提交
16

T
fix ci  
typhoonzero 已提交
17
#include <nccl.h>
18
#include <sys/time.h>
Y
Yi Wang 已提交
19 20
#include <thread>  // NOLINT

21 22 23 24 25
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
26
#include "paddle/fluid/operators/detail/variable_response.h"
G
gongweibao 已提交
27 28 29 30 31

namespace paddle {
namespace operators {
namespace detail {

32 33
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
Y
Yancey1989 已提交
34 35
                           ::grpc::ByteBuffer* msg,
                           const std::string& out_name) {
36 37 38 39 40 41 42
  using VarMsg = sendrecv::VariableMessage;
  // When using GPU, need to free the copied CPU buffer
  // when the ByteBuffer destroies
  // TODO(typhoonzero): add unref here, if we have dependent
  // parallelism execution, need to know when to free the tensor.
  DestroyCallback destroy_callback = [](void* backing) {};

G
gongweibao 已提交
43 44 45
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();

Y
Yancey 已提交
46
  void* payload = nullptr;
T
typhoonzero 已提交
47
  size_t payload_size = 0;
Y
Yi Wang 已提交
48
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
49 50 51 52 53
  e.WriteString(VarMsg::kVarnameFieldNumber, name);
  if (var->IsType<framework::LoDTensor>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
  } else if (var->IsType<framework::SelectedRows>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 1);
T
typhoonzero 已提交
54 55 56
  } else if (var->IsType<ncclUniqueId>()) {
    // NOTE: sendrecv only support RAW type for NCCL_ID
    e.WriteUint64(VarMsg::kTypeFieldNumber, 2);
57 58
  }

Y
Yancey1989 已提交
59 60 61
  if (!out_name.empty()) {
    e.WriteString(VarMsg::kOutVarnameFieldNumber, out_name);
  }
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  switch (framework::ToVarType(var->Type())) {
    case framework::proto::VarType_Type_LOD_TENSOR: {
      auto tensor = var->Get<framework::LoDTensor>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(tensor.type()));
      for (auto& dim : framework::vectorize(tensor.dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      auto lod = tensor.lod();  // std::vector<Vector<size_t>>
      if (lod.size() > 0) {
        e.WriteUint64(VarMsg::kLodLevelFieldNumber, lod.size());

        for (auto& each : lod) {
          e.WriteVarlengthBeginning(VarMsg::kLodFieldNumber,
                                    2 +      // tag + varintlength of submessage
                                        1 +  // kLodDataFieldNumber
                                        each.size());
          // auto copied from GPU
          for (auto& d : each) {
            e.WriteUint64(VarMsg::LodData::kLodDataFieldNumber, d);
          }
        }
      }
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
T
typhoonzero 已提交
91
        auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
92
        payload = memory::Alloc(cpu, copy_size);
93

94 95 96 97
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor.place()),
                     reinterpret_cast<const void*>(tensor.data<void>()),
                     copy_size, gpu_dev_ctx.stream());
98
        ctx.Wait();
99 100 101 102
        destroy_callback = [](void* backing) {
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
        };
103

104 105 106 107
#endif
      } else {
        payload = tensor.data<void>();
      }
T
typhoonzero 已提交
108
      payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
109 110 111 112 113 114 115 116 117 118 119
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
    case framework::proto::VarType_Type_SELECTED_ROWS: {
      // TODO(typhoonzero): selectedrows implement should not use unique_ptr
      auto* slr = var->GetMutable<framework::SelectedRows>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(slr->value().type()));
      for (auto& dim : framework::vectorize(slr->value().dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      e.WriteUint64(VarMsg::kLodLevelFieldNumber, 0);
120
      e.WriteUint64(VarMsg::kSlrHeightFieldNumber, slr->height());
121 122 123 124 125 126
      auto* tensor = slr->mutable_value();
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
T
typhoonzero 已提交
127 128
        auto copy_size =
            tensor->numel() * framework::SizeOfType(tensor->type());
129 130 131 132 133 134 135
        payload = memory::Alloc(cpu, copy_size);
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor->place()),
                     reinterpret_cast<const void*>(tensor->data<void>()),
                     copy_size, gpu_dev_ctx.stream());
        ctx.Wait();
        destroy_callback = [](void* backing) {
136 137
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
138 139 140 141 142
        };
#endif
      } else {
        payload = slr->mutable_value()->data<void>();
      }
T
typhoonzero 已提交
143
      payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
144 145
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
T
typhoonzero 已提交
146 147 148 149 150 151
    case framework::proto::VarType_Type_RAW: {
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
                                NCCL_UNIQUE_ID_BYTES);
      ncclUniqueId* uid = var->GetMutable<ncclUniqueId>();
      e.WriteRawBytes(std::string(uid->internal, NCCL_UNIQUE_ID_BYTES));
    } break;
152 153 154 155 156
    default:
      PADDLE_THROW("Serialize does not support type: %s",
                   typeid(var->Type()).name());
      break;
  }
T
typhoonzero 已提交
157 158 159 160 161 162 163 164 165 166

  if (framework::ToVarType(var->Type()) == framework::proto::VarType_Type_RAW) {
    // for serialize NCCL_ID
    ::grpc::Slice slices(e.size());
    memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
    ::grpc::ByteBuffer tmp(&slices, 1);
    msg->Swap(&tmp);
    return;
  }

167 168 169 170 171 172 173 174 175 176 177 178 179 180
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

  if (framework::ToVarType(var->Type()) ==
      framework::proto::VarType_Type_SELECTED_ROWS) {
    auto* slr = var->GetMutable<framework::SelectedRows>();

Y
Yi Wang 已提交
181
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
182 183
    // NOTE: rows is of type int64_t
    size_t rows_memory_size =
T
typhoonzero 已提交
184
        slr->rows().size() * framework::SizeOfType(typeid(int64_t));
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size,
            [](void* backing) {
              // TODO(typhoonzero): add unref here, same as above.
            },
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
209
                               const framework::Scope* scope,
Y
Yi Wang 已提交
210
                               framework::Variable** var) {
211
  operators::detail::VariableResponse resp(scope, &ctx);
212
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
Y
Yi Wang 已提交
213
  *var = resp.GetVar();
214 215
}

G
gongweibao 已提交
216 217
}  // namespace detail
}  // namespace operators
Y
Yancey 已提交
218
}  // namespace paddle