conv2d_op.cc 7.2 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

L
Luo Tao 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
L
Luo Tao 已提交
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
L
Luo Tao 已提交
16

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

L
Luo Tao 已提交
27 28 29 30
namespace paddle {
namespace inference {
namespace tensorrt {

31 32 33 34 35 36 37 38 39 40
template <typename RegistFunc, typename SetDilationFunc>
void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
                   const framework::Scope& scope, bool test_mode,
                   RegistFunc fadd_layer, SetDilationFunc fset_dilation,
                   const std::string& name) {
  VLOG(3) << "convert a fluid " << name << " op to tensorrt layer without bias";

  framework::OpDesc op_desc(op, nullptr);

  auto* X = engine->GetITensor(op_desc.Input("Input").front());
41 42 43 44 45
  std::string filter_var_name = op_desc.Input("Filter").front();
  auto* Y_v = scope.FindVar(filter_var_name);
  PADDLE_ENFORCE_NOT_NULL(
      Y_v, platform::errors::NotFound(
               "Can not find %s presistale var in scope.", filter_var_name));
46
  auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
47
  float* weight_data = nullptr;
48
  bool enable_int8 = op_desc.HasAttr("enable_int8");
49 50 51

  if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
52 53
    float in_scale =
        BOOST_GET_CONST(float, op_desc.GetAttr("Input_scale")) * 127;
54
    auto weight_scale =
55
        BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
56 57 58 59 60 61 62 63
    weight_data = engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t,
                                           true, weight_scale);
    engine->SetTensorDynamicRange(X, in_scale);
#endif
  } else {
    weight_data =
        engine->GetWeightCPUData(op_desc.Input("Filter").front(), Y_t, false);
  }
64

65 66 67 68 69
  PADDLE_ENFORCE_EQ(Y_t->dims().size(), 4UL,
                    platform::errors::InvalidArgument(
                        "The conv2d filter's dims size should be 4, but got %d",
                        Y_t->dims().size()));

70 71 72 73
  const int n_output = Y_t->dims()[0];
  const int n_input = Y_t->dims()[1];
  const int filter_h = Y_t->dims()[2];
  const int filter_w = Y_t->dims()[3];
74
  const int groups = BOOST_GET_CONST(int, op_desc.GetAttr("groups"));
75
  const std::vector<int> dilations =
76
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("dilations"));
77
  const std::vector<int> strides =
78
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
79
  const std::vector<int> paddings =
80
      BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
81 82 83 84
  std::string padding_algorithm = "EXPLICIT";
  if (op_desc.HasAttr("padding_algorithm"))
    padding_algorithm =
        BOOST_GET_CONST(std::string, op_desc.GetAttr("padding_algorithm"));
85 86 87 88 89 90 91 92

  nvinfer1::DimsHW nv_ksize(filter_h, filter_w);
  nvinfer1::DimsHW nv_dilations(dilations[0], dilations[1]);
  nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
  nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

  TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(weight_data),
93
                                static_cast<size_t>(Y_t->numel())};
94 95 96 97 98 99 100 101 102
  float* bias_data = nullptr;
  size_t bias_size = 0;
  if (op_desc.Type() == "conv2d_fusion") {
    auto* bias_tensor = scope.GetVar(op_desc.Input("Bias").front());
    auto* bias_tensor_data = bias_tensor->GetMutable<framework::LoDTensor>();
    bias_data = engine->GetWeightCPUData(op_desc.Input("Bias").front(),
                                         bias_tensor_data, false);
    bias_size = static_cast<size_t>(bias_tensor_data->numel());
  }
103

104 105
  TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                              static_cast<void*>(bias_data), bias_size};
106 107 108 109 110 111 112 113 114 115 116 117
  // In conv2d_transpose and depthwise_conv2d_transpose,
  // output channels = filter_dims[1] * groups
  auto* layer = (op_desc.Type() == "conv2d_transpose" ||
                 op_desc.Type() == "depthwise_conv2d_transpose")
                    ? fadd_layer(const_cast<nvinfer1::ITensor*>(X),
                                 n_input * groups, nv_ksize, weight, bias)
                    : fadd_layer(const_cast<nvinfer1::ITensor*>(X), n_output,
                                 nv_ksize, weight, bias);

  PADDLE_ENFORCE_NOT_NULL(
      layer, platform::errors::Fatal("TensorRT create conv2d/conv2d_transpose"
                                     " layer failed."));
118 119 120
  layer->setStride(nv_strides);
  layer->setPadding(nv_paddings);
  layer->setNbGroups(groups);
121 122 123
  if (padding_algorithm == "SAME") {
    layer->setPaddingMode(nvinfer1::PaddingMode::kSAME_UPPER);
  }
124 125 126 127 128 129 130 131
  // set dilations
  fset_dilation(layer, nv_dilations);

  auto output_name = op_desc.Output("Output").front();
  layer->setName((name + " (Output: " + output_name + ")").c_str());
  layer->getOutput(0)->setName(output_name.c_str());
  engine->SetITensor(output_name, layer->getOutput(0));

N
nhzlx 已提交
132
  if (test_mode) {
133 134 135 136
    engine->DeclareOutput(output_name);
  }
}

L
Luo Tao 已提交
137 138
class Conv2dOpConverter : public OpConverter {
 public:
139
  void operator()(const framework::proto::OpDesc& op,
140
                  const framework::Scope& scope, bool test_mode) override {
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Conv output maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IConvolutionLayer* {
          auto* layer =
              TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IConvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
          layer->setDilation(dilations);
        },
        "conv2d");
  }
};

class Deconv2dOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
                  const framework::Scope& scope, bool test_mode) override {
    ConvertConv2d(
        engine_, op, scope, test_mode,
        [&](nvinfer1::ITensor* inputs, int n_output, /* Deconv input maps */
            nvinfer1::DimsHW& ksize, TensorRTEngine::Weight& weight,
            TensorRTEngine::Weight& bias) -> nvinfer1::IDeconvolutionLayer* {
          auto* layer =
168
              TRT_ENGINE_ADD_LAYER(engine_, Deconvolution, *inputs, n_output,
169 170 171 172 173 174
                                   ksize, weight.get(), bias.get());
          return layer;
        },
        [](nvinfer1::IDeconvolutionLayer* layer, nvinfer1::DimsHW& dilations) {
        },
        "conv2d_transpose");
L
Luo Tao 已提交
175 176
  }
};
L
Luo Tao 已提交
177

L
Luo Tao 已提交
178 179 180
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle
181 182

REGISTER_TRT_OP_CONVERTER(conv2d, Conv2dOpConverter);
183
REGISTER_TRT_OP_CONVERTER(conv2d_fusion, Conv2dOpConverter);
184
REGISTER_TRT_OP_CONVERTER(conv2d_transpose, Deconv2dOpConverter);