prelu_op.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
11

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/prelu_op.h"
13

14
#include <memory>
15
#include <string>
Z
zchen0211 已提交
16 17 18 19

namespace paddle {
namespace operators {

Z
fix  
zchen0211 已提交
20
class PReluOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
21
 public:
Z
fix  
zchen0211 已提交
22
  PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
Z
zchen0211 已提交
23 24 25 26
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

27
  void InferShape(framework::InferShapeContext *ctx) const override {
28 29 30
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput("Alpha"), "Input", "Alpha", "prelu");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "prelu");
J
jerrywgz 已提交
31 32

    auto x_dim = ctx->GetInputDim("X");
33
    std::string mode = ctx->Attrs().Get<std::string>("mode");
J
jerrywgz 已提交
34
    if (mode == "all") {
35 36 37 38 39
      PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), 1,
                        platform::errors::InvalidArgument(
                            "For mode 'all', size of weight Alpha must be one. "
                            "But recevied alpha's size: %d.",
                            product(ctx->GetInputDim("Alpha"))));
J
jerrywgz 已提交
40
    } else if (mode == "channel") {
41 42 43 44 45 46
      PADDLE_ENFORCE_EQ(product(ctx->GetInputDim("Alpha")), x_dim[1],
                        platform::errors::InvalidArgument(
                            "For mode 'channel', size of weight Alpha must be "
                            "equal to the number of channels of input(x). But "
                            "recevied alpha's size: %d, x_dim[1]: %d",
                            product(ctx->GetInputDim("Alpha")), x_dim[1]));
47 48 49 50 51 52 53
      auto x_rank = x_dim.size();
      PADDLE_ENFORCE_GE(x_rank, 2,
                        platform::errors::InvalidArgument(
                            "For mode 'channel', rank of input X must be "
                            "equal or larger than 2. But recevied X's "
                            "rank: %d",
                            x_rank));
J
jerrywgz 已提交
54
    } else if (mode == "element") {
55 56 57
      auto alpha_dim = ctx->GetInputDim("Alpha");
      auto alpha_rank = alpha_dim.size();
      auto x_rank = x_dim.size();
58 59 60 61 62 63
      PADDLE_ENFORCE_GE(x_rank, 1,
                        platform::errors::InvalidArgument(
                            "For mode 'element', rank of input X must be "
                            "equal or larger than 2. But recevied X's "
                            "rank: %d",
                            x_rank));
64 65 66 67 68 69 70
      PADDLE_ENFORCE_EQ(
          alpha_rank, x_rank,
          platform::errors::InvalidArgument(
              "For mode 'element', rank of weight Alpha must be ",
              "equal to the rank of input(x). But recevied alpha's rank: %d, "
              "x's rank: %d.",
              alpha_rank, x_rank));
71 72 73 74 75 76
      size_t x_product = 1;
      size_t alpha_product = 1;
      for (int64_t i = x_rank - 1; i > 0; i--) {
        x_product *= x_dim[i];
        alpha_product *= alpha_dim[i];
      }
77 78 79 80 81 82 83
      PADDLE_ENFORCE_EQ(
          alpha_product, x_product,
          platform::errors::InvalidArgument(
              "For mode 'element', the size of weight Alpha must be "
              "equal to the size of input(x). But recevied alpha's size: %d, "
              "x's size: %d.",
              alpha_product, x_product));
J
jerrywgz 已提交
84
    } else {
85 86 87 88 89
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Attr(mode) of prelu must be one of 'all', 'channel', or 'element'. "
          "But recevied "
          "mode: '%s'.",
          mode));
J
jerrywgz 已提交
90
    }
91
    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
92
    ctx->ShareLoD("X", /*->*/ "Out");
Z
zchen0211 已提交
93
  }
J
jerrywgz 已提交
94 95 96 97

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
98 99 100
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
J
jerrywgz 已提交
101
  }
Z
zchen0211 已提交
102 103
};

Z
fix  
zchen0211 已提交
104
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
Z
zchen0211 已提交
105
 public:
Y
Yu Yang 已提交
106
  void Make() override {
Z
zchen0211 已提交
107
    AddInput("X", "The input tensor of prelu operator.");
K
kexinzhao 已提交
108 109 110 111
    AddInput("Alpha", "The alpha weight of prelu operator.");
    AddOutput("Out", "The output tensor of prelu operator.");
    AddComment(R"DOC(
PRelu Operator.
Z
zchen0211 已提交
112
The equation is:
K
kexinzhao 已提交
113 114 115 116 117 118 119
$$
f(x) =
\begin{cases}
\alpha * x, \quad  \text{if} \ x < 0 \\
x,         \qquad  \text{if} \ x >= 0
\end{cases}
$$
120
The input `X` can carry the LoD (Level of Details) information,
K
kexinzhao 已提交
121
or not. And the output shares the LoD information with input `X`.
122
There are modes:
J
jerrywgz 已提交
123 124
  all: all elements share same weight
  channel: elements in a channel share same weight
125
  element: each element has a weight
Z
zchen0211 已提交
126
)DOC");
J
jerrywgz 已提交
127 128
    AddAttr<std::string>("mode", "The mode for inputs to share weights.")
        .SetDefault("all");
Z
zchen0211 已提交
129 130 131 132
  }
};

// The operator to calculate gradients of a prelu operator.
Z
fix  
zchen0211 已提交
133
class PReluGradOp : public framework::OperatorWithKernel {
Z
zchen0211 已提交
134 135 136
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

137
  void InferShape(framework::InferShapeContext *ctx) const override {
138 139 140 141
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "prelu");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@GRAD", "prelu");

J
jerrywgz 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155
    auto x_grad_name = framework::GradVarName("X");
    auto alpha_grad_name = framework::GradVarName("Alpha");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    }
    if (ctx->HasOutput(alpha_grad_name)) {
      ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
156 157 158
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
Z
zchen0211 已提交
159 160 161
  }
};

162 163 164 165 166 167
template <typename T>
class PReluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
168
  void Apply(GradOpPtr<T> op) const override {
169 170 171 172 173 174 175 176 177 178
    op->SetType("prelu_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Alpha", this->Input("Alpha"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Alpha"), this->InputGrad("Alpha"));
    op->SetAttrMap(this->Attrs());
  }
};

Z
zchen0211 已提交
179 180 181 182 183
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

184 185 186
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
                  ops::PReluGradOpMaker<paddle::framework::OpDesc>,
                  ops::PReluGradOpMaker<paddle::imperative::OpBase>);
187
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);
Q
QI JUN 已提交
188
REGISTER_OP_CPU_KERNEL(
189 190
    prelu, ops::PReluKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluKernel<paddle::platform::CPUDeviceContext, double>);
Q
QI JUN 已提交
191
REGISTER_OP_CPU_KERNEL(
192 193
    prelu_grad, ops::PReluGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PReluGradKernel<paddle::platform::CPUDeviceContext, double>);