test_fleet_base_single.py 5.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import os
cuda_visible_devices = os.getenv('CUDA_VISIBLE_DEVICES')
if cuda_visible_devices is None or cuda_visible_devices == "":
    os.environ['CUDA_VISIBLE_DEVICES'] = '0'
else:
    os.environ['CUDA_VISIBLE_DEVICES'] = cuda_visible_devices.split(',')[0]
import paddle
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.fluid as fluid
import unittest
import paddle.nn as nn


class LinearNet(nn.Layer):
    def __init__(self):
        super(LinearNet, self).__init__()
        self._linear1 = nn.Linear(10, 10)
        self._linear2 = nn.Linear(10, 1)

    def forward(self, x):
        return self._linear2(self._linear1(x))


class TestFleetDygraphSingle(unittest.TestCase):
    def setUp(self):
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36213"
        os.environ["PADDLE_CURRENT_ENDPOINTS"] = "127.0.0.1:36213"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_TRAINER_ID"] = "0"

    def test_dygraph_single(self):
        paddle.disable_static()
        fleet.init(is_collective=True)

        layer = LinearNet()
        loss_fn = nn.MSELoss()
        adam = paddle.optimizer.Adam(
            learning_rate=0.001, parameters=layer.parameters())

        adam = fleet.distributed_optimizer(adam)
        dp_layer = fleet.distributed_model(layer)
        for step in range(2):
            inputs = paddle.randn([10, 10], 'float32')
            outputs = dp_layer(inputs)
            labels = paddle.randn([10, 1], 'float32')
            loss = loss_fn(outputs, labels)
            loss = dp_layer.scale_loss(loss)
            loss.backward()
            adam.step()
            adam.clear_grad()


class TestFleetBaseSingleRunCollective(unittest.TestCase):
    def setUp(self):
        pass

    def gen_data(self):
        return {
            "x": np.random.random(size=(128, 32)).astype('float32'),
            "y": np.random.randint(
                2, size=(128, 1)).astype('int64')
        }

    def test_single_run_collective_minimize(self):
81
        paddle.enable_static()
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')

        fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh')
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
        cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
        avg_cost = paddle.mean(x=cost)

        fleet.init(is_collective=True)
        optimizer = fluid.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer)
        optimizer.minimize(avg_cost)

        place = fluid.CUDAPlace(0) if paddle.fluid.is_compiled_with_cuda(
        ) else fluid.CPUPlace()

        exe = fluid.Executor(place)
        exe.run(paddle.static.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=self.gen_data(), fetch_list=[avg_cost.name])
            print("cost of step[{}] = {}".format(i, cost_val))


class TestFleetBaseSingleRunPS(unittest.TestCase):
    def setUp(self):
        pass

    def gen_data(self):
        return {
            "x": np.random.random(size=(128, 32)).astype('float32'),
            "y": np.random.randint(
                2, size=(128, 1)).astype('int64')
        }

    def test_single_run_ps_minimize(self):
118
        paddle.enable_static()
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        input_x = paddle.static.data(name="x", shape=[-1, 32], dtype='float32')
        input_y = paddle.static.data(name="y", shape=[-1, 1], dtype='int64')

        fc_1 = fluid.layers.fc(input=input_x, size=64, act='tanh')
        prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
        cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
        avg_cost = paddle.mean(x=cost)

        fleet.init()
        strategy = paddle.distributed.fleet.DistributedStrategy()
        optimizer = fluid.optimizer.SGD(learning_rate=0.01)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)
        if fleet.is_server():
            fleet.init_server()
            fleet.run_server()
        elif fleet.is_worker():
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(paddle.static.default_startup_program())
            step = 10
            for i in range(step):
                cost_val = exe.run(program=fluid.default_main_program(),
                                   feed=self.gen_data(),
                                   fetch_list=[avg_cost.name])
                print("worker_index: %d, step%d cost = %f" %
                      (fleet.worker_index(), i, cost_val[0]))


if __name__ == "__main__":
    unittest.main()