flowers.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31 32 33

from __future__ import print_function

34
import itertools
35
import functools
36
from .common import download
37
import tarfile
M
minqiyang 已提交
38
import six
39
import scipy.io as scio
40 41
from paddle.dataset.image import *
from paddle.reader import *
42 43
import os
import numpy as np
44
from multiprocessing import cpu_count
M
minqiyang 已提交
45
import six
46 47
from six.moves import cPickle as pickle
from six.moves import zip
48 49
__all__ = ['train', 'test', 'valid']

M
minqiyang 已提交
50 51 52 53
DATA_URL = 'http://paddlemodels.cdn.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.cdn.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.cdn.bcebos.com/flowers/setid.mat'
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
54 55
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
56 57 58 59 60 61
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
62 63


64
def default_mapper(is_train, sample):
65 66 67 68
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
69
    img = load_image_bytes(img)
D
dangqingqing 已提交
70
    img = simple_transform(
D
dangqingqing 已提交
71
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
72 73 74
    return img.flatten().astype('float32'), label


75 76 77 78
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


79 80 81
def reader_creator(data_file,
                   label_file,
                   setid_file,
82
                   dataset_name,
83
                   mapper,
84
                   buffered_size=1024,
85 86
                   use_xmap=True,
                   cycle=False):
87
    '''
88
    1. read images from tar file and
89 90
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
91 92

    :param data_file: downloaded data file
93
    :type data_file: string
94
    :param label_file: downloaded label file
95 96 97 98
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
99 100
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
101
    :param mapper: a function to map image bytes data to type
102 103
                    needed by model input layer
    :type mapper: callable
104 105
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
106 107
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
108 109 110
    :return: data reader
    :rtype: callable
    '''
111 112 113 114 115 116 117
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
118 119

    def reader():
120 121 122 123
        while True:
            for file in open(file_list):
                file = file.strip()
                batch = None
124
                with open(file, 'rb') as f:
M
minqiyang 已提交
125 126 127 128
                    if six.PY2:
                        batch = pickle.load(f)
                    else:
                        batch = pickle.load(f, encoding='bytes')
129 130
                data = batch['data']
                labels = batch['label']
131
                for sample, label in zip(data, batch['label']):
132 133 134
                    yield sample, int(label) - 1
            if not cycle:
                break
135

W
wanghaoshuang 已提交
136
    if use_xmap:
C
chengduoZH 已提交
137 138
        cpu_num = int(os.environ.get('CPU_NUM', cpu_count()))
        return xmap_readers(mapper, reader, cpu_num, buffered_size)
139 140
    else:
        return map_readers(mapper, reader)
141 142


143
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
144
    '''
145 146 147
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
148 149 150 151 152 153
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
154 155
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
156 157
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
158 159 160 161 162 163
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
164 165 166 167 168 169
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
170 171


172
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
173
    '''
174 175 176
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
177 178 179 180 181 182
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
183 184
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
185 186
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
187 188 189 190 191 192
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
193 194 195 196 197 198
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
199 200


201
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
202
    '''
203 204 205
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
206 207 208 209
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
210 211 212 213 214 215
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
216 217 218 219
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
220 221
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
222 223 224 225 226 227


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)