softmax_compute.cc 2.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/softmax_compute.h"
#include "paddle/fluid/lite/arm/math/funcs.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

void SoftmaxCompute::Run() {
  auto& param = Param<operators::SoftmaxParam>();
  const float* din = param.x->data<float>();
  float* dout = param.output->mutable_data<float>();
  auto dim_x = param.x->dims();
  auto rank_x = dim_x.size();
  int axis = param.axis;
  if (axis < 0) {
    axis += rank_x;
  }
  int outer_num = dim_x.Slice(0, axis).production();
  int inner_num = dim_x.Slice(axis + 1, rank_x).production();
  int axis_size = dim_x[axis];
  if (inner_num == 1) {
    if (axis_size >= 4) {
      lite::arm::math::softmax_inner1_large_axis(din, dout, outer_num,
                                                 axis_size);
    } else {
      lite::arm::math::softmax_inner1_small_axis(din, dout, outer_num,
                                                 axis_size);
    }
  } else {
    int compute_size = outer_num * inner_num;
    if (axis_size == 4 && inner_num % 8 == 0) {
      lite::arm::math::softmax_inner8_axis4(din, dout, axis_size, inner_num,
                                            outer_num);
    } else if (axis_size == 4 && inner_num % 4 == 0) {
      lite::arm::math::softmax_inner4_axis4(din, dout, axis_size, inner_num,
                                            outer_num);
    } else {
      if (inner_num % 8 == 0) {
        lite::arm::math::softmax_inner8(din, dout, axis_size, inner_num,
                                        outer_num);
      } else if (inner_num % 4 == 0) {
        lite::arm::math::softmax_inner4(din, dout, axis_size, inner_num,
                                        outer_num);
      } else {
        lite::arm::math::softmax_basic(din, dout, axis_size, inner_num,
                                       outer_num);
      }
    }
  }
}

TargetType SoftmaxCompute::target() const { return TARGET(kARM); }

PrecisionType SoftmaxCompute::precision() const { return PRECISION(kFloat); }

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(softmax, kARM, kFloat, kNCHW,
                     paddle::lite::kernels::arm::SoftmaxCompute, def)
    .BindInput("X", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();