layer_norm_op.cu 16.3 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <cub/cub.cuh>
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/layer_norm_op.h"
C
chengduoZH 已提交
17

S
sneaxiy 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
namespace paddle {
namespace operators {

inline static int GetDesiredBlockDim(int block_dim) {
  const int kMaxBlockDim = 512;
  return block_dim >= kMaxBlockDim
             ? kMaxBlockDim
             : (1 << (static_cast<int>(std::log2f(block_dim))));
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

45 46 47
static __device__ __forceinline__ float real_sqrt(float x) { return sqrtf(x); }
static __device__ __forceinline__ double real_sqrt(double x) { return sqrt(x); }

S
sneaxiy 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60
template <typename T, int BlockDim>
__global__ void LayerNormForward(const T *x, const T *scale, const T *bias,
                                 T *y, T *mean, T *var, float epsilon,
                                 int feature_size) {
  using BlockReduce = cub::BlockReduce<T, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

  // Step 1: Reduce to calculate mean
  T mean_val = static_cast<T>(0);
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
61
    mean_val += x[i];
S
sneaxiy 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74
  }
  mean_val = BlockReduce(temp_storage).Reduce(mean_val, cub::Sum());
  if (threadIdx.x == 0) mean[blockIdx.x] = mean_val / feature_size;
  __syncthreads();
  mean_val = mean[blockIdx.x];

  // Step 2: Reduce to calculate var
  T var_val = static_cast<T>(0);
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T tmp = x[i] - mean_val;
    var_val += (tmp * tmp);
  }
  var_val = BlockReduce(temp_storage).Reduce(var_val, cub::Sum());
75
  if (threadIdx.x == 0) var[blockIdx.x] = var_val / feature_size;
S
sneaxiy 已提交
76
  __syncthreads();
77
  var_val = static_cast<T>(real_sqrt(var[blockIdx.x] + epsilon));
S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

  // Step 3: Calculate y
  if (scale != nullptr) {
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = scale[j] * (x[i] - mean_val) / var_val + bias[j];
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = scale[j] * (x[i] - mean_val) / var_val;
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = (x[i] - mean_val) / var_val + bias[j];
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = (x[i] - mean_val) / var_val;
      }
    }
  }
}

template <typename T>
108 109 110 111
struct PairForLayerNormBackward {
  __device__ __forceinline__ PairForLayerNormBackward() {}
  __device__ __forceinline__ PairForLayerNormBackward(const T &first,
                                                      const T &second)
S
sneaxiy 已提交
112 113 114 115 116 117 118
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
119 120 121 122 123 124
struct PairForLayerNormBackwardAddFunctor {
  __device__ __forceinline__ PairForLayerNormBackward<T> operator()(
      const PairForLayerNormBackward<T> &p1,
      const PairForLayerNormBackward<T> &p2) {
    return PairForLayerNormBackward<T>(p1.first_ + p2.first_,
                                       p1.second_ + p2.second_);
S
sneaxiy 已提交
125 126 127 128 129 130 131 132 133 134 135
  }
};

// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
template <typename T, int BlockDim, bool HasDx>
__global__ void LayerNormBackwardGradientAll(const T *x, const T *d_y,
                                             T *d_scale, T *d_bias, T *d_x,
                                             const T *mean, const T *var,
                                             const T *scale, float epsilon,
                                             int batch_size, int feature_size) {
136
  using BlockReduce = cub::BlockReduce<PairForLayerNormBackward<T>, BlockDim>;
S
sneaxiy 已提交
137 138 139 140 141 142 143 144 145
  __shared__ typename BlockReduce::TempStorage temp_storage;

  int beg_idx = threadIdx.x * feature_size + blockIdx.x;
  int end_idx = batch_size * feature_size + blockIdx.x;
  int stride = BlockDim * feature_size;
  T d_scale_partial = 0, d_bias_partial = 0;

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
146
    auto var_val = static_cast<T>(real_sqrt(var[row_idx] + epsilon));
S
sneaxiy 已提交
147 148 149 150 151
    d_scale_partial += d_y[i] * (x[i] - mean[row_idx]) / var_val;
    d_bias_partial += d_y[i];
    if (HasDx) d_x[i] = d_y[i] * scale[blockIdx.x] / var_val;
  }

152 153 154 155
  auto pair =
      BlockReduce(temp_storage)
          .Reduce(PairForLayerNormBackward<T>(d_scale_partial, d_bias_partial),
                  PairForLayerNormBackwardAddFunctor<T>());
S
sneaxiy 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179

  if (threadIdx.x == 0) {
    d_scale[blockIdx.x] = pair.first_;
    d_bias[blockIdx.x] = pair.second_;
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
template <typename T, int BlockDim, bool HasDx, bool HasDScale>
__global__ void LayerNormBackwardGradientScaleOrBias(
    const T *x, const T *d_y, T *d_scale, T *d_bias, T *d_x, const T *mean,
    const T *var, const T *scale, float epsilon, int batch_size,
    int feature_size) {
  using BlockReduce = cub::BlockReduce<T, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int beg_idx = threadIdx.x * feature_size + blockIdx.x;
  int end_idx = batch_size * feature_size + blockIdx.x;
  int stride = BlockDim * feature_size;
  T d_scale_or_d_bias_partial = 0;

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
180
    auto var_val = static_cast<T>(real_sqrt(var[row_idx] + epsilon));
S
sneaxiy 已提交
181 182 183 184 185 186 187
    if (HasDScale) {
      d_scale_or_d_bias_partial += d_y[i] * (x[i] - mean[row_idx]) / var_val;
    } else {  // d_bias != nullptr
      d_scale_or_d_bias_partial += d_y[i];
    }

    if (HasDx) {
188
      if (scale != nullptr) {
S
sneaxiy 已提交
189
        d_x[i] = d_y[i] * scale[blockIdx.x] / var_val;
190
      } else {
S
sneaxiy 已提交
191
        d_x[i] = d_y[i] / var_val;
192
      }
S
sneaxiy 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
      d_scale[blockIdx.x] = d_scale_or_d_bias_partial;
    } else {
      d_bias[blockIdx.x] = d_scale_or_d_bias_partial;
    }
  }
}

// Here, we only calculate d_x
template <typename T>
__global__ void LayerNormBackwardGradientOnlyX(const T *d_y, T *d_x,
                                               const T *var, const T *scale,
                                               float epsilon, int batch_size,
                                               int feature_size) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < batch_size * feature_size) {
    int row_idx = idx / feature_size;
217
    auto var_val = static_cast<T>(real_sqrt(var[row_idx] + epsilon));
S
sneaxiy 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    if (scale != nullptr) {
      int col_idx = idx % feature_size;
      d_x[idx] = d_y[idx] * scale[col_idx] / var_val;
    } else {
      d_x[idx] = d_y[idx] / var_val;
    }
  }
}

template <typename T>
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
    const T *x, const T *d_y, T *d_x, T *d_scale, T *d_bias, const T *mean,
    const T *var, const T *scale, float epsilon, int feature_size) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < feature_size) {
233
    auto var_val = static_cast<T>(real_sqrt(var[idx] + epsilon));
S
sneaxiy 已提交
234
    if (d_x != nullptr) {
235
      if (d_scale == nullptr) {
S
sneaxiy 已提交
236
        d_x[idx] = d_y[idx] / var_val;
237
      } else {
S
sneaxiy 已提交
238
        d_x[idx] = d_y[idx] * scale[idx] / var_val;
239
      }
S
sneaxiy 已提交
240
    }
241 242

    if (d_scale != nullptr) {
S
sneaxiy 已提交
243
      d_scale[idx] = d_y[idx] * (x[idx] - mean[idx]) / var_val;
244 245
    }

S
sneaxiy 已提交
246 247 248 249 250 251 252 253 254 255
    if (d_bias != nullptr) d_bias[idx] = d_y[idx];
  }
}

template <typename T>
static void LayerNormBackward(const T *x, const T *d_y, const T *scale,
                              const T *mean, const T *var, T *d_x, T *d_scale,
                              T *d_bias, float epsilon, int batch_size,
                              int feature_size, cudaStream_t stream) {
  const int kMaxBlockDim = 512;
256 257 258
  int gradient_flag = ((d_x != nullptr ? 1 : 0) << 2) |
                      ((d_scale != nullptr ? 1 : 0) << 1) |
                      ((d_bias != nullptr ? 1 : 0));
S
sneaxiy 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
    LayerNormBackwardWhenBatchSizeIsOne<
        T><<<(feature_size + kMaxBlockDim - 1) / kMaxBlockDim, kMaxBlockDim, 0,
             stream>>>(x, d_y, d_x, d_scale, d_bias, mean, var, scale, epsilon,
                       feature_size);
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, false,
                             false><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, false,
                             true><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientAll<
                T, kBlockDim, false><<<feature_size, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size));
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
      LayerNormBackwardGradientOnlyX<
          T><<<(batch_size * feature_size + kMaxBlockDim - 1) / kMaxBlockDim,
               kMaxBlockDim, 0, stream>>>(d_y, d_x, var, scale, epsilon,
                                          batch_size, feature_size);
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, true,
                             false><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, true,
                             true><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientAll<
                T, kBlockDim, true><<<feature_size, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size));
      }
      break;
    default:
      break;
  }
}

template <typename T>
class LayerNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *bias = ctx.Input<Tensor>("Bias");
    auto *x = ctx.Input<Tensor>("X");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    const auto x_dims = x->dims();
    auto *x_data = x->data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
    auto *mean_data = mean->mutable_data<T>(ctx.GetPlace());
    auto *var_data = var->mutable_data<T>(ctx.GetPlace());
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<T>());
    auto *bias_data = (bias == nullptr ? nullptr : bias->data<T>());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

    auto stream = ctx.cuda_device_context().stream();

    switch (GetDesiredBlockDim(feature_size)) {
      FIXED_BLOCK_DIM_CASE(
          LayerNormForward<T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
              x_data, scale_data, bias_data, y_data, mean_data, var_data,
              epsilon, feature_size));
      default:
        PADDLE_THROW(
            "Product from begin_norm_axis to end must be larger than 1");
        break;
    }
  }
};

template <typename T>
class LayerNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    // d_x, d_scale, d_bias may be nullptr
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto *x = ctx.Input<Tensor>("X");
    auto *mean = ctx.Input<Tensor>("Mean");
    auto *var = ctx.Input<Tensor>("Variance");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    auto *x_data = x->data<T>();
    auto *d_y_data = d_y->data<T>();
    auto *mean_data = mean->data<T>();
    auto *var_data = var->data<T>();
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<T>());
    auto *d_scale_data =
        (d_scale == nullptr ? nullptr
                            : d_scale->mutable_data<T>(ctx.GetPlace()));
    auto *d_bias_data =
        (d_bias == nullptr ? nullptr : d_bias->mutable_data<T>(ctx.GetPlace()));
    auto *d_x_data =
        (d_x == nullptr ? nullptr : d_x->mutable_data<T>(ctx.GetPlace()));

    const auto &x_dims = x->dims();
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

    auto stream = ctx.cuda_device_context().stream();

    LayerNormBackward<T>(x_data, d_y_data, scale_data, mean_data, var_data,
                         d_x_data, d_scale_data, d_bias_data, epsilon,
                         batch_size, feature_size, stream);
  }
};

#undef FIXED_BLOCK_DIM_CASE_BASE
#undef FIXED_BLOCK_DIM_CASE
}  // namespace operators
}  // namespace paddle

C
chengduoZH 已提交
427 428 429
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
C
chengduoZH 已提交
430 431
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, double>);
C
chengduoZH 已提交
432 433
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
434 435
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, double>);