scatter.cu.h 7.3 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14 15

#pragma once
16
#include <unordered_set>
17
#include <vector>
18
#include "math/math_function.h"
Y
Yi Wang 已提交
19
#include "paddle/fluid/framework/tensor.h"
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/cuda_primitives.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/place.h"
Z
zchen0211 已提交
23 24 25 26

namespace paddle {
namespace operators {

27 28
using Tensor = framework::Tensor;

Z
zchen0211 已提交
29 30 31
#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)
32 33 34 35 36 37 38 39 40 41 42 43
template <typename T, typename IndexT = int>
__global__ void ScatterInitCUDAKernel(const IndexT* indices, T* output,
                                      size_t index_size, size_t slice_size,
                                      bool overwrite) {
  CUDA_1D_KERNEL_LOOP(i, index_size * slice_size) {
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT scatter_i = indices[indices_i];
    IndexT out_i = scatter_i * slice_size + slice_i;
    *(output + out_i) = static_cast<T>(0);
  }
}
Z
zchen0211 已提交
44

45 46
template <typename T, typename IndexT = int>
__global__ void ScatterCUDAKernel(const T* params, const IndexT* indices,
Z
zchen0211 已提交
47
                                  T* output, size_t index_size,
48
                                  size_t slice_size, bool overwrite) {
Z
zchen0211 已提交
49 50 51
  CUDA_1D_KERNEL_LOOP(i, index_size * slice_size) {
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
52 53
    IndexT scatter_i = indices[indices_i];
    IndexT out_i = scatter_i * slice_size + slice_i;
54 55 56 57 58
    if (overwrite) {
      *(output + out_i) = *(params + i);
    } else {
      paddle::platform::CudaAtomicAdd(output + out_i, *(params + i));
    }
Z
zchen0211 已提交
59 60 61
  }
}

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
template <typename T, typename IndexT = int>
__global__ void ScatterNdCUDAKernel(const T* update, const IndexT* indices,
                                    T* output, const int* output_dims,
                                    size_t remain_size, size_t slice_size,
                                    size_t end_size) {
  CUDA_1D_KERNEL_LOOP(i, remain_size * slice_size) {
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size;  // offset inside the slice
    IndexT gather_i = 0;
    int64_t temp = slice_size;
    for (int64_t j = end_size - 1; j >= 0; --j) {
      IndexT index_value = indices[indices_i * end_size + j];
      gather_i += (index_value * temp);
      temp *= output_dims[j];
    }
    IndexT output_i = gather_i + slice_i;
    paddle::platform::CudaAtomicAdd(output + output_i, *(update + i));
  }
}

Z
zchen0211 已提交
82 83 84 85 86
/**
 * A thin wrapper on gpu tensor
 * Return a new updated tensor from source tensor, scatter-assigned according to
 * index
 * input[src]: type-T source Tensor
87
 * input[index]: type-IndexT index Tensor (1-D)
Z
zchen0211 已提交
88 89
 * return: output tensor
 */
90
template <typename T, typename IndexT = int>
91 92 93
void GPUScatterAssign(const framework::ExecutionContext& context,
                      const Tensor& src, const Tensor& index, Tensor* output,
                      bool overwrite = true) {
Z
zchen0211 已提交
94
  // check index of shape 1-D
95
  const auto& ctx = context.device_context();
96 97
  if (index.dims().size() == 2) {
    PADDLE_ENFORCE_EQ(index.dims()[1], 1,
98 99 100 101 102
                      platform::errors::InvalidArgument(
                          "index.dims()[1] should be 1 when "
                          "index.dims().size() = 2 in scatter_op."
                          "But received value is [%d]",
                          index.dims()[1]));
103 104
  } else {
    PADDLE_ENFORCE_EQ(index.dims().size(), 1,
105 106 107 108
                      platform::errors::InvalidArgument(
                          "index.dims().size() should be 1 or 2 in scatter_op."
                          "But received value is [%d]",
                          index.dims().size()));
109
  }
110
  int index_size = index.dims()[0];
Z
zchen0211 已提交
111

112
  auto src_dims = src.dims();
Z
zchen0211 已提交
113 114 115 116 117 118 119
  framework::DDim output_dims(src_dims);
  output_dims[0] = index_size;

  // slice size
  int slice_size = 1;
  for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];

120
  const T* p_src = src.data<T>();
121
  const IndexT* p_index = index.data<IndexT>();
Z
1 api  
zchen0211 已提交
122
  T* p_output = output->data<T>();
123
  const size_t& slice_bytes = slice_size * sizeof(T);
Z
1 api  
zchen0211 已提交
124

125
  // set block and grid num
Z
1 api  
zchen0211 已提交
126 127 128 129
  int block = 512;
  int n = slice_size * index_size;
  int grid = (n + block - 1) / block;

130 131 132 133 134 135 136 137
  // if not overwrite mode, init data
  if (!overwrite) {
    ScatterInitCUDAKernel<T, IndexT><<<
        grid, block, 0,
        reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
        p_index, p_output, index_size, slice_size, overwrite);
  }

138
  ScatterCUDAKernel<T, IndexT><<<
Z
zchen0211 已提交
139 140
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
141
      p_src, p_index, p_output, index_size, slice_size, overwrite);
Z
zchen0211 已提交
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
template <typename DeviceContext, typename T, typename IndexT = int>
void GPUScatterNdAdd(const framework::ExecutionContext& context,
                     const Tensor& update, const Tensor& index,
                     Tensor* output) {
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  auto output_dims = output->dims();
  auto output_dims_size = output_dims.size();

  const T* p_update = update.data<T>();
  const IndexT* p_index = index.data<IndexT>();
  T* p_output = output->data<T>();

  // final dim
  int64_t end_size = index_dims[index_dims_size - 1];
  // remain dim
  auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
  int64_t remain_numel = framework::product(remain_ddim);
  // slice size
  int64_t slice_size = 1;
  for (int64_t i = end_size; i < output_dims_size; ++i) {
    slice_size *= output_dims[i];
  }
  const size_t slice_bytes = slice_size * sizeof(T);
  // put output_dims int CUDA
  // gplace and cplace
  const auto& ctx = context.template device_context<DeviceContext>();
  const auto gplace = boost::get<platform::CUDAPlace>(ctx.GetPlace());
  auto cplace = platform::CPUPlace();

  std::vector<int> v_output_dims(output_dims_size);
  for (int i = 0; i < output_dims_size; ++i) {
    v_output_dims[i] = static_cast<int>(output_dims[i]);
  }
  auto& dev_ctx = context.cuda_device_context();
  int bytes = output_dims_size * sizeof(int);
181
  auto output_dims_ptr = memory::Alloc(dev_ctx, bytes);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  int* g_output_dims = reinterpret_cast<int*>(output_dims_ptr->ptr());
  memory::Copy(gplace, g_output_dims, cplace, v_output_dims.data(), bytes,
               ctx.stream());

  int block = 512;
  int n = slice_size * remain_numel;
  int grid = (n + block - 1) / block;

  ScatterNdCUDAKernel<T, IndexT><<<
      grid, block, 0,
      reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream()>>>(
      p_update, p_index, p_output, g_output_dims, remain_numel, slice_size,
      end_size);
}

Z
zchen0211 已提交
197 198
}  // namespace operators
}  // namespace paddle