lstm_op.cc 13.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstm_op.h"
S
sneaxiy 已提交
16
#include <memory>
17
#include <string>
D
dangqingqing 已提交
18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

class LSTMOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
D
dangqingqing 已提交
27 28
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
29 30 31 32 33
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");

D
dangqingqing 已提交
34 35
    PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
                   "Output(Hidden) of LSTM should not be null.");
36
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
D
dangqingqing 已提交
37
                   "Output(Cell) of LSTM should not be null.");
38 39 40 41
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
                   "Output(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
                   "Output(BatchGate) of LSTM should not be null.");
D
dangqingqing 已提交
42

D
dangqingqing 已提交
43 44
    auto in_dims = ctx->GetInputDim("Input");
    PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
D
dangqingqing 已提交
45 46 47 48 49 50 51 52 53 54 55 56

    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
                     "Input(Cell) and Input(Hidden) of LSTM should not "
                     "be null at the same time.");
      auto h_dims = ctx->GetInputDim("H0");
      auto c_dims = ctx->GetInputDim("C0");
      PADDLE_ENFORCE(h_dims == c_dims,
                     "The dimension of Input(H0) and Input(C0) "
                     "should be the same.");
    }

D
dangqingqing 已提交
57
    int frame_size = in_dims[1] / 4;
D
dangqingqing 已提交
58 59 60 61 62 63 64 65 66 67 68
    auto w_dims = ctx->GetInputDim("Weight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], frame_size,
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      frame_size);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);
69

D
dangqingqing 已提交
70 71 72 73
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");
74 75

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
D
dangqingqing 已提交
76 77 78 79 80 81 82
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
Y
Yu Yang 已提交
83
                        "4 * %d if disable peepholes connection",
D
dangqingqing 已提交
84 85
                        frame_size);
    }
86

D
dangqingqing 已提交
87 88 89 90 91
    framework::DDim out_dims({in_dims[0], frame_size});
    ctx->SetOutputDim("Hidden", out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
D
dangqingqing 已提交
92 93 94
    ctx->ShareLoD("Input", "Hidden");
    ctx->ShareLoD("Input", "Cell");
  }
95 96

 protected:
97
  framework::OpKernelType GetExpectedKernelType(
98
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
99
    return framework::OpKernelType(
100 101
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
102
  }
D
dangqingqing 已提交
103 104 105 106
};

class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
107
  void Make() override {
D
dangqingqing 已提交
108 109 110
    AddInput("Input",
             "(LoDTensor) the first input is a LodTensor, which support "
             "variable-time length input sequence. The underlying tensor in "
D
dangqingqing 已提交
111
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
D
dangqingqing 已提交
112 113 114 115
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
K
kexinzhao 已提交
116
             "batch size and D is the hidden size.")
117
        .AsDispensable();
D
dangqingqing 已提交
118 119 120
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
Y
Yibing Liu 已提交
121
             "batch size. `H0` and `C0` can be NULL but only at the same time.")
122
        .AsDispensable();
D
dangqingqing 已提交
123 124
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
D
dangqingqing 已提交
125 126
             " - The shape is (D x 4D), where D is the hidden size. "
             " - Weight = {W_ch, W_ih, W_fh, W_oh}");
D
dangqingqing 已提交
127 128 129
    AddInput("Bias",
             "(Tensor) the learnable weights, which contains two parts: "
             "input-hidden bias weight and peephole connections weight if "
130 131
             "setting `use_peepholes` True. "
             "1. `use_peepholes = False` "
D
dangqingqing 已提交
132 133
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
134
             "2. `use_peepholes = True` "
D
dangqingqing 已提交
135
             " - The shape is (1 x 7D). "
136
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
D
dangqingqing 已提交
137
    AddOutput("Hidden",
D
dangqingqing 已提交
138 139
              "(LoDTensor) the hidden state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
D
dangqingqing 已提交
140
    AddOutput("Cell",
D
dangqingqing 已提交
141 142
              "(LoDTensor) the cell state of LSTM operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
143 144
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yu Yang 已提交
145
              "and output gate after the nonlinear computation. This "
K
kexinzhao 已提交
146
              "LoDTensor has the same shape as the reorganized input, which "
D
dangqingqing 已提交
147
              "is also be called batch input. The LoD size is 2. The first "
148 149 150
              "LoD is the batch offsets and the second LoD contains the "
              "indexes, which denote the position of reorganized sequence "
              "in the raw input.")
D
dangqingqing 已提交
151
        .AsIntermediate();
D
dangqingqing 已提交
152
    AddOutput("BatchCellPreAct",
K
kexinzhao 已提交
153
              "(LoDTensor) This LoDTensor is obtained in the forward and used "
D
dangqingqing 已提交
154 155
              "in the backward.")
        .AsIntermediate();
156
    AddAttr<bool>("use_peepholes",
翟飞跃 已提交
157
                  "(bool, default: True) "
D
dangqingqing 已提交
158 159
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
160
    AddAttr<bool>("is_reverse",
翟飞跃 已提交
161
                  "(bool, default: False) "
D
dangqingqing 已提交
162
                  "whether to compute reversed LSTM.")
163
        .SetDefault(false);
D
dangqingqing 已提交
164
    AddAttr<std::string>(
165
        "gate_activation",
Y
Yu Yang 已提交
166
        "(string, default: sigmoid)"
D
dangqingqing 已提交
167
        "The activation for input gate, forget gate and output "
Y
Yu Yang 已提交
168
        "gate, `sigmoid` by default.")
D
dangqingqing 已提交
169 170
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
171
    AddAttr<std::string>("cell_activation",
Y
Yu Yang 已提交
172
                         "(string, default: tanh)"
翟飞跃 已提交
173
                         "The activation for cell output, `tanh` by default.")
D
dangqingqing 已提交
174 175
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
176
    AddAttr<std::string>("candidate_activation",
Y
Yu Yang 已提交
177
                         "(string, default: tanh)"
D
dangqingqing 已提交
178
                         "The activation for candidate hidden state, "
Y
Yu Yang 已提交
179
                         "`tanh` by default.")
D
dangqingqing 已提交
180 181
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
K
kexinzhao 已提交
182 183
    AddComment(R"DOC(
Long-Short Term Memory (LSTM) Operator.
D
dangqingqing 已提交
184

翟飞跃 已提交
185
The default implementation is diagonal/peephole connection
K
kexinzhao 已提交
186
(https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows:
D
dangqingqing 已提交
187

Y
yuyang18 已提交
188
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + W_{ic}c_{t-1} + b_i) $$
D
dangqingqing 已提交
189

Y
yuyang18 已提交
190
$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + W_{fc}c_{t-1} + b_f) $$
D
dangqingqing 已提交
191

Y
yuyang18 已提交
192
$$ \\tilde{c_t} = act_g(W_{cx}x_t + W_{ch}h_{t-1} + b_c) $$
D
dangqingqing 已提交
193

Y
yuyang18 已提交
194
$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + W_{oc}c_t + b_o) $$
D
dangqingqing 已提交
195

Y
yuyang18 已提交
196
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$
D
dangqingqing 已提交
197

Y
yuyang18 已提交
198
$$ h_t = o_t \\odot act_h(c_t) $$
D
dangqingqing 已提交
199

Y
yi.wu 已提交
200 201 202
- W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
  of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
  are diagonal weight matrices for peephole connections. In our implementation,
翟飞跃 已提交
203
  we use vectors to represent these diagonal weight matrices.
Y
yi.wu 已提交
204 205 206 207 208 209 210 211 212 213
- The b terms denote bias vectors ($b_i$ is the input gate bias vector).
- $\sigma$ is the non-line activations, such as logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate,
  and cell activation vectors, respectively, all of which have the same size as
  the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors.
- $act_g$ and $act_h$ are the cell input and cell output activation functions
  and `tanh` is usually used for them.
- $\tilde{c_t}$ is also called candidate hidden state,
  which is computed based on the current input and the previous hidden state.
D
dangqingqing 已提交
214

D
dangqingqing 已提交
215 216 217
Set `use_peepholes` False to disable peephole connection. The formula
is omitted here, please refer to the paper
http://www.bioinf.jku.at/publications/older/2604.pdf for details.
D
dangqingqing 已提交
218

D
dangqingqing 已提交
219 220
Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
D
dangqingqing 已提交
221
Users can choose to use fully-connect operator before LSTM operator.
D
dangqingqing 已提交
222 223 224 225 226 227 228 229 230

)DOC");
  }
};

class LSTMGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

231
  void InferShape(framework::InferShapeContext* ctx) const override {
232 233 234 235 236 237
    PADDLE_ENFORCE(ctx->HasInput("Input"),
                   "Input(Input) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Hidden"),
                   "Input(Hidden) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
                   "Input(Cell) of LSTM should not be null.");
238 239 240 241
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
                   "Input(Weight) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of LSTM should not be null.");
242 243 244 245 246 247

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
                   "Input(BatchGate) of LSTM should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
                   "Input(BatchGate) of LSTM should not be null.");

D
dangqingqing 已提交
248 249 250 251 252 253 254 255 256 257 258
    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

    SetOutGradDim("Input");
    SetOutGradDim("Weight");
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
D
dangqingqing 已提交
259
  }
260 261

 protected:
262
  framework::OpKernelType GetExpectedKernelType(
263
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
264
    return framework::OpKernelType(
265 266
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"),
        ctx.device_context());
267
  }
D
dangqingqing 已提交
268 269
};

H
hong 已提交
270 271
template <typename T>
class LSTMGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
272
 public:
H
hong 已提交
273
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
274 275

 protected:
276
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
277
    op->SetType("lstm_grad");
H
hong 已提交
278 279 280
    op->SetAttrMap(this->Attrs());
    op->SetInput("Input", this->Input("Input"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
S
sneaxiy 已提交
281

H
hong 已提交
282 283 284
    if (this->HasInput("H0")) {
      op->SetInput("H0", this->Input("H0"));
      op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
S
sneaxiy 已提交
285 286
    }

H
hong 已提交
287 288 289
    if (this->HasInput("C0")) {
      op->SetInput("C0", this->Input("C0"));
      op->SetOutput(framework::GradVarName("C0"), this->InputGrad("C0"));
S
sneaxiy 已提交
290 291
    }

H
hong 已提交
292 293
    op->SetInput("Weight", this->Input("Weight"));
    op->SetOutput(framework::GradVarName("Weight"), this->InputGrad("Weight"));
S
sneaxiy 已提交
294

H
hong 已提交
295 296
    op->SetInput("Bias", this->Input("Bias"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
297

H
hong 已提交
298
    op->SetInput("Cell", this->Output("Cell"));
S
sneaxiy 已提交
299

H
hong 已提交
300 301
    op->SetInput("Hidden", this->Output("Hidden"));
    op->SetInput(framework::GradVarName("Hidden"), this->OutputGrad("Hidden"));
S
sneaxiy 已提交
302

H
hong 已提交
303 304
    op->SetInput("BatchGate", this->Output("BatchGate"));
    op->SetInput("BatchCellPreAct", this->Output("BatchCellPreAct"));
S
sneaxiy 已提交
305 306 307
  }
};

D
dangqingqing 已提交
308 309 310 311
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
312
REGISTER_OPERATOR(lstm, ops::LSTMOp, ops::LSTMOpMaker,
H
hong 已提交
313 314
                  ops::LSTMGradOpMaker<paddle::framework::OpDesc>,
                  ops::LSTMGradOpMaker<paddle::imperative::OpBase>);
315
REGISTER_OPERATOR(lstm_grad, ops::LSTMGradOp);
Q
QI JUN 已提交
316 317 318 319 320 321
REGISTER_OP_CPU_KERNEL(
    lstm, ops::LSTMKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstm_grad, ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMGradKernel<paddle::platform::CPUDeviceContext, double>);