lod_reset_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lod_reset_op.h"
S
sneaxiy 已提交
16
#include <memory>
17
#include <string>
18 19 20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

class LoDResetOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LoDResetOp should not be null.");
31 32

    if (!ctx->HasInput("Y")) {
33
      auto level0 = ctx->Attrs().Get<std::vector<int>>("target_lod");
34
      PADDLE_ENFORCE_GT(level0.size(), 0,
Y
yangyaming 已提交
35
                        "If Input(Y) not provided, the target lod should be "
36
                        "specified by attribute `target_lod`.");
37
    } else if (ctx->IsRuntime()) {
H
Hongyu Liu 已提交
38
      ctx->ShareLoD("Y", "Out");
P
phlrain 已提交
39
    }
40 41 42 43
    auto append = ctx->Attrs().Get<bool>("append");
    if (append) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
44 45 46 47
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }

 protected:
48
  framework::OpKernelType GetExpectedKernelType(
49
      const framework::ExecutionContext &ctx) const override {
50 51 52
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
53
  }
54 55 56 57 58 59 60 61

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   expected_kernel_type.place_,
                                   tensor.layout());
  }
62 63
};

64 65 66 67 68
class LoDResetOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_var_name = ctx->Input("X").front();
    auto out_var_name = ctx->Output("Out").front();
69
    bool append = boost::get<bool>(ctx->GetAttr("append"));
70 71 72 73
    if (ctx->HasInput("Y")) {
      auto y_var_name = ctx->Input("Y").front();
      auto y_lod_level = std::max(ctx->GetLoDLevel(y_var_name), 1);
      ctx->SetLoDLevel(out_var_name, y_lod_level);
74 75 76
    } else if (append) {
      auto x_lod_level = std::max(ctx->GetLoDLevel(x_var_name), 1);
      ctx->SetLoDLevel(out_var_name, x_lod_level);
77 78 79 80 81 82 83 84
    } else {
      ctx->SetLoDLevel(out_var_name, 1);
    }
    ctx->SetDataType(out_var_name, ctx->GetDataType(x_var_name));
    ctx->SetType(out_var_name, paddle::framework::proto::VarType::LOD_TENSOR);
  }
};

85 86
class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
87
  void Make() override {
88 89 90 91 92
    AddInput("X",
             "(Tensor, LoDTensor) Input variable of LoDResetOp which "
             "could be a Tensor or LoDTensor, where the data of output "
             "variable inherits from.");
    AddInput("Y",
Y
yangyaming 已提交
93 94 95 96
             "(Tensor, LoDTensor, optional) If provided and Y is LoDTensor, "
             "lod of Input(Y) would be considered as the target lod first, "
             "otherwise data of Input(Y) would be considered as the "
             "target lod.")
97
        .AsDispensable();
98 99 100
    AddOutput("Out",
              "(LoDTensor) Output variable of LoDResetOp which should be a "
              "LoDTensor.");
101 102 103
    AddAttr<std::vector<int>>("target_lod",
                              "The target level 0 LoD from Attr().")
        .SetDefault(std::vector<int>{});
104
    AddAttr<bool>("append", "Append data to lod vector.").SetDefault(false);
105 106
    AddComment(R"DOC(LoDReset operator

107
Set LoD of `X` to a new one specified by `Y` or attribute `target_lod`. When `Y`
Y
yangyaming 已提交
108 109 110 111 112
provided and `Y` is a LoDTensor, `Y.lod` would be considered as target LoD
first, otherwise `Y.data` would be considered as target LoD. If `Y` is not
provided, target LoD should be specified by attribute `target_lod`.
If target LoD is specified by `Y.data` or `target_lod`, only one level LoD
is supported.
113

Y
yangyaming 已提交
114
Example 1:
115

Y
yangyaming 已提交
116 117
Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
118 119
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]
120

Y
yangyaming 已提交
121
attr(target_lod): [0, 4, 6]
122

Y
yangyaming 已提交
123
then we get a 1-level LoDTensor:
124 125 126
    Out.lod =  [[ 0,                   4,            6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]
127

Y
yangyaming 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
Example 2:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,     2,                   5      6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a Tensor:
    Y.data = [[0, 2, 6]]
    Y.dims = [1, 3]

then we get a 1-level LoDTensor:
    Out.lod =  [[ 0,     2,                          6 ]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

Example 3:

Given a 1-level LoDTensor input(X):
    X.lod =  [[ 0,      2,                   5     6 ]]
    X.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    X.dims = [6, 1]

input(Y) is a 2-level LoDTensor:
    Y.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
    Y.dims = [6, 1]

then we get a 2-level LoDTensor:
    Out.lod =  [[0, 2, 4], [0, 2, 5, 6]]
    Out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
    Out.dims = [6, 1]

161 162 163 164 165 166 167 168 169
)DOC");
  }
};

class LoDResetGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
170 171
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of LoDResetGradOp should not be null.");
172
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
173 174 175 176 177 178 179
                   "Input(Out@Grad) of LoDResetGradOp should not be null.");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
      ctx->ShareLoD("X", /*->*/ x_grad_name);
    }
180 181 182
  }

 protected:
183
  framework::OpKernelType GetExpectedKernelType(
184
      const framework::ExecutionContext &ctx) const override {
185 186 187
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
188 189 190
  }
};

H
hong 已提交
191 192
template <typename T>
class LoDResetGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
193
 public:
H
hong 已提交
194
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
195 196

 protected:
H
hong 已提交
197 198
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
199
    op->SetType("lod_reset_grad");
H
hong 已提交
200 201 202 203
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("X", this->Input("X"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
204 205 206 207
    return op;
  }
};

208 209 210 211 212
DECLARE_INPLACE_OP_INFERER(LodResetInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(LodResetGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

S
sneaxiy 已提交
213 214 215
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LoDResetGradNoNeedBufferVarInference,
                                      "X");

216 217 218 219
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
220
REGISTER_OPERATOR(lod_reset, ops::LoDResetOp, ops::LoDResetOpMaker,
H
hong 已提交
221 222
                  ops::LoDResetGradMaker<paddle::framework::OpDesc>,
                  ops::LoDResetGradMaker<paddle::imperative::OpBase>,
223
                  ops::LoDResetOpVarTypeInference, ops::LodResetInplaceInferer);
S
sneaxiy 已提交
224
REGISTER_OPERATOR(lod_reset_grad, ops::LoDResetGradOp,
225 226
                  ops::LoDResetGradNoNeedBufferVarInference,
                  ops::LodResetGradInplaceInferer);
227

228 229 230 231 232
REGISTER_OP_CPU_KERNEL(
    lod_reset, ops::LoDResetKernel<paddle::platform::CPUPlace, float>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetKernel<paddle::platform::CPUPlace, int64_t>);
233 234
REGISTER_OP_CPU_KERNEL(
    lod_reset_grad, ops::LoDResetGradKernel<paddle::platform::CPUPlace, float>,
235 236 237
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, double>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int>,
    ops::LoDResetGradKernel<paddle::platform::CPUPlace, int64_t>);