#include #include #include #include #define MAX_ADDR_LEN 6 #define SMC911X_EMAC_DEVICE(eth) (struct eth_device_smc911x*)(eth) #include "drv_smc911x.h" #define DRIVERNAME "EMAC" struct eth_device_smc911x { /* inherit from Ethernet device */ struct eth_device parent; /* interface address info. */ rt_uint8_t enetaddr[MAX_ADDR_LEN]; /* MAC address */ uint32_t iobase; uint32_t irqno; }; static struct eth_device_smc911x _emac; int udelay(int value) { return 0; } int mdelay(int value) { return 0; } #if defined (CONFIG_SMC911X_32_BIT) rt_inline uint32_t smc911x_reg_read(struct eth_device_smc911x *dev, uint32_t offset) { return *(volatile uint32_t*)(dev->iobase + offset); } rt_inline void smc911x_reg_write(struct eth_device_smc911x *dev, uint32_t offset, uint32_t val) { *(volatile uint32_t*)(dev->iobase + offset) = val; } #elif defined (CONFIG_SMC911X_16_BIT) rt_inline uint32_t smc911x_reg_read(struct eth_device_smc911x *dev, uint32_t offset) { volatile uint16_t *addr_16 = (uint16_t *)(dev->iobase + offset); return ((*addr_16 & 0x0000ffff) | (*(addr_16 + 1) << 16)); } rt_inline void smc911x_reg_write(struct eth_device_smc911x *dev, uint32_t offset, uint32_t val) { *(volatile uint16_t *)(dev->iobase + offset) = (uint16_t)val; *(volatile uint16_t *)(dev->iobase + offset + 2) = (uint16_t)(val >> 16); } #else #error "SMC911X: undefined bus width" #endif /* CONFIG_SMC911X_16_BIT */ struct chip_id { uint16_t id; char *name; }; static const struct chip_id chip_ids[] = { { CHIP_89218,"LAN89218" }, { CHIP_9115, "LAN9115" }, { CHIP_9116, "LAN9116" }, { CHIP_9117, "LAN9117" }, { CHIP_9118, "LAN9118" }, { CHIP_9211, "LAN9211" }, { CHIP_9215, "LAN9215" }, { CHIP_9216, "LAN9216" }, { CHIP_9217, "LAN9217" }, { CHIP_9218, "LAN9218" }, { CHIP_9220, "LAN9220" }, { CHIP_9221, "LAN9221" }, { 0, RT_NULL }, }; static uint32_t smc911x_get_mac_csr(struct eth_device_smc911x *dev, uint8_t reg) { while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY) ; smc911x_reg_write(dev, MAC_CSR_CMD, MAC_CSR_CMD_CSR_BUSY | MAC_CSR_CMD_R_NOT_W | reg); while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY) ; return smc911x_reg_read(dev, MAC_CSR_DATA); } static void smc911x_set_mac_csr(struct eth_device_smc911x *dev, uint8_t reg, uint32_t data) { while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY) ; smc911x_reg_write(dev, MAC_CSR_DATA, data); smc911x_reg_write(dev, MAC_CSR_CMD, MAC_CSR_CMD_CSR_BUSY | reg); while (smc911x_reg_read(dev, MAC_CSR_CMD) & MAC_CSR_CMD_CSR_BUSY) ; } static int smc911x_detect_chip(struct eth_device_smc911x *dev) { unsigned long val, i; val = smc911x_reg_read(dev, BYTE_TEST); if (val == 0xffffffff) { /* Special case -- no chip present */ return -1; } else if (val != 0x87654321) { rt_kprintf(DRIVERNAME ": Invalid chip endian 0x%08lx\n", val); return -1; } val = smc911x_reg_read(dev, ID_REV) >> 16; for (i = 0; chip_ids[i].id != 0; i++) { if (chip_ids[i].id == val) break; } if (!chip_ids[i].id) { rt_kprintf(DRIVERNAME ": Unknown chip ID %04lx\n", val); return -1; } return 0; } static void smc911x_reset(struct eth_device_smc911x *dev) { int timeout; /* * Take out of PM setting first * Device is already wake up if PMT_CTRL_READY bit is set */ if ((smc911x_reg_read(dev, PMT_CTRL) & PMT_CTRL_READY) == 0) { /* Write to the bytetest will take out of powerdown */ smc911x_reg_write(dev, BYTE_TEST, 0x0); timeout = 10; while (timeout-- && !(smc911x_reg_read(dev, PMT_CTRL) & PMT_CTRL_READY)) udelay(10); if (timeout < 0) { rt_kprintf(DRIVERNAME ": timeout waiting for PM restore\n"); return; } } /* Disable interrupts */ smc911x_reg_write(dev, INT_EN, 0); smc911x_reg_write(dev, HW_CFG, HW_CFG_SRST); timeout = 1000; while (timeout-- && smc911x_reg_read(dev, E2P_CMD) & E2P_CMD_EPC_BUSY) udelay(10); if (timeout < 0) { rt_kprintf(DRIVERNAME ": reset timeout\n"); return; } /* Reset the FIFO level and flow control settings */ smc911x_set_mac_csr(dev, FLOW, FLOW_FCPT | FLOW_FCEN); smc911x_reg_write(dev, AFC_CFG, 0x0050287F); /* Set to LED outputs */ smc911x_reg_write(dev, GPIO_CFG, 0x70070000); } static void smc911x_handle_mac_address(struct eth_device_smc911x *dev) { unsigned long addrh, addrl; uint8_t *m = dev->enetaddr; addrl = m[0] | (m[1] << 8) | (m[2] << 16) | (m[3] << 24); addrh = m[4] | (m[5] << 8); smc911x_set_mac_csr(dev, ADDRL, addrl); smc911x_set_mac_csr(dev, ADDRH, addrh); } static int smc911x_eth_phy_read(struct eth_device_smc911x *dev, uint8_t phy, uint8_t reg, uint16_t *val) { while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY) ; smc911x_set_mac_csr(dev, MII_ACC, phy << 11 | reg << 6 | MII_ACC_MII_BUSY); while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY) ; *val = smc911x_get_mac_csr(dev, MII_DATA); return 0; } static int smc911x_eth_phy_write(struct eth_device_smc911x *dev, uint8_t phy, uint8_t reg, uint16_t val) { while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY) ; smc911x_set_mac_csr(dev, MII_DATA, val); smc911x_set_mac_csr(dev, MII_ACC, phy << 11 | reg << 6 | MII_ACC_MII_BUSY | MII_ACC_MII_WRITE); while (smc911x_get_mac_csr(dev, MII_ACC) & MII_ACC_MII_BUSY) ; return 0; } static int smc911x_phy_reset(struct eth_device_smc911x *dev) { uint32_t reg; reg = smc911x_reg_read(dev, PMT_CTRL); reg &= ~0xfffff030; reg |= PMT_CTRL_PHY_RST; smc911x_reg_write(dev, PMT_CTRL, reg); mdelay(100); return 0; } static void smc911x_phy_configure(struct eth_device_smc911x *dev) { int timeout; uint16_t status; smc911x_phy_reset(dev); smc911x_eth_phy_write(dev, 1, MII_BMCR, BMCR_RESET); mdelay(1); smc911x_eth_phy_write(dev, 1, MII_ADVERTISE, 0x01e1); smc911x_eth_phy_write(dev, 1, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); timeout = 5000; do { mdelay(1); if ((timeout--) == 0) goto err_out; if (smc911x_eth_phy_read(dev, 1, MII_BMSR, &status) != 0) goto err_out; } while (!(status & BMSR_LSTATUS)); return; err_out: rt_kprintf(DRIVERNAME ": autonegotiation timed out\n"); } static void smc911x_enable(struct eth_device_smc911x *dev) { /* Enable TX */ smc911x_reg_write(dev, HW_CFG, 8 << 16 | HW_CFG_SF); smc911x_reg_write(dev, GPT_CFG, GPT_CFG_TIMER_EN | 10000); smc911x_reg_write(dev, TX_CFG, TX_CFG_TX_ON); /* no padding to start of packets */ smc911x_reg_write(dev, RX_CFG, 0); smc911x_set_mac_csr(dev, MAC_CR, MAC_CR_TXEN | MAC_CR_RXEN | MAC_CR_HBDIS); } #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) /* wrapper for smc911x_eth_phy_read */ static int smc911x_miiphy_read(struct mii_dev *bus, int phy, int devad, int reg) { uint16_t val = 0; struct eth_device_smc911x *dev = eth_get_dev_by_name(bus->name); if (dev) { int retval = smc911x_eth_phy_read(dev, phy, reg, &val); if (retval < 0) return retval; return val; } return -ENODEV; } /* wrapper for smc911x_eth_phy_write */ static int smc911x_miiphy_write(struct mii_dev *bus, int phy, int devad, int reg, uint16_t val) { struct eth_device_smc911x *dev = eth_get_dev_by_name(bus->name); if (dev) return smc911x_eth_phy_write(dev, phy, reg, val); return -ENODEV; } #endif static void smc911x_isr(int vector, void *param) { uint32_t status; struct eth_device_smc911x *emac; emac = SMC911X_EMAC_DEVICE(param); status = smc911x_reg_read(emac, INT_STS); if (status & INT_STS_RSFL) { eth_device_ready(&emac->parent); } smc911x_reg_write(emac, INT_STS, status); return ; } static rt_err_t smc911x_emac_init(rt_device_t dev) { // uint32_t value; struct eth_device_smc911x *emac; emac = SMC911X_EMAC_DEVICE(dev); RT_ASSERT(emac != RT_NULL); smc911x_reset(emac); /* Configure the PHY, initialize the link state */ smc911x_phy_configure(emac); smc911x_handle_mac_address(emac); /* Turn on Tx + Rx */ smc911x_enable(emac); #if 1 /* Interrupt on every received packet */ smc911x_reg_write(emac, FIFO_INT, 0x01 << 8); smc911x_reg_write(emac, INT_EN, INT_EN_RDFL_EN | INT_EN_RSFL_EN); /* enable interrupt */ smc911x_reg_write(emac, INT_CFG, INT_CFG_IRQ_EN | INT_CFG_IRQ_POL | INT_CFG_IRQ_TYPE); #else /* disable interrupt */ smc911x_reg_write(emac, INT_EN, 0); value = smc911x_reg_read(emac, INT_CFG); value &= ~INT_CFG_IRQ_EN; smc911x_reg_write(emac, INT_CFG, value); #endif rt_hw_interrupt_install(emac->irqno, smc911x_isr, emac, "smc911x"); rt_hw_interrupt_umask(emac->irqno); return RT_EOK; } static rt_err_t smc911x_emac_control(rt_device_t dev, int cmd, void *args) { struct eth_device_smc911x *emac; emac = SMC911X_EMAC_DEVICE(dev); RT_ASSERT(emac != RT_NULL); switch(cmd) { case NIOCTL_GADDR: /* get MAC address */ if(args) rt_memcpy(args, emac->enetaddr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* Ethernet device interface */ /* transmit packet. */ static uint8_t tx_buf[2048]; rt_err_t smc911x_emac_tx(rt_device_t dev, struct pbuf* p) { struct eth_device_smc911x *emac; uint32_t *data; uint32_t tmplen; uint32_t status; uint32_t length; emac = SMC911X_EMAC_DEVICE(dev); RT_ASSERT(emac != RT_NULL); /* copy pbuf to a whole ETH frame */ pbuf_copy_partial(p, tx_buf, p->tot_len, 0); /* send it out */ data = (uint32_t*)tx_buf; length = p->tot_len; smc911x_reg_write(emac, TX_DATA_FIFO, TX_CMD_A_INT_FIRST_SEG | TX_CMD_A_INT_LAST_SEG | length); smc911x_reg_write(emac, TX_DATA_FIFO, length); tmplen = (length + 3) / 4; while (tmplen--) { smc911x_reg_write(emac, TX_DATA_FIFO, *data++); } /* wait for transmission */ while (!((smc911x_reg_read(emac, TX_FIFO_INF) & TX_FIFO_INF_TSUSED) >> 16)); /* get status. Ignore 'no carrier' error, it has no meaning for * full duplex operation */ status = smc911x_reg_read(emac, TX_STATUS_FIFO) & (TX_STS_LOC | TX_STS_LATE_COLL | TX_STS_MANY_COLL | TX_STS_MANY_DEFER | TX_STS_UNDERRUN); if (!status) return 0; rt_kprintf(DRIVERNAME ": failed to send packet: %s%s%s%s%s\n", status & TX_STS_LOC ? "TX_STS_LOC " : "", status & TX_STS_LATE_COLL ? "TX_STS_LATE_COLL " : "", status & TX_STS_MANY_COLL ? "TX_STS_MANY_COLL " : "", status & TX_STS_MANY_DEFER ? "TX_STS_MANY_DEFER " : "", status & TX_STS_UNDERRUN ? "TX_STS_UNDERRUN" : ""); return -RT_EIO; } /* reception packet. */ struct pbuf *smc911x_emac_rx(rt_device_t dev) { struct pbuf* p = RT_NULL; struct eth_device_smc911x *emac; emac = SMC911X_EMAC_DEVICE(dev); RT_ASSERT(emac != RT_NULL); /* take the emac buffer to the pbuf */ if ((smc911x_reg_read(emac, RX_FIFO_INF) & RX_FIFO_INF_RXSUSED) >> 16) { uint32_t status; uint32_t pktlen, tmplen; status = smc911x_reg_read(emac, RX_STATUS_FIFO); /* get frame length */ pktlen = (status & RX_STS_PKT_LEN) >> 16; smc911x_reg_write(emac, RX_CFG, 0); tmplen = (pktlen + 3) / 4; /* allocate pbuf */ p = pbuf_alloc(PBUF_LINK, tmplen * 4, PBUF_RAM); if (p) { uint32_t *data = (uint32_t *)p->payload; while (tmplen--) { *data++ = smc911x_reg_read(emac, RX_DATA_FIFO); } } if (status & RX_STS_ES) { rt_kprintf(DRIVERNAME ": dropped bad packet. Status: 0x%08x\n", status); } } return p; } int smc911x_emac_hw_init(void) { _emac.iobase = VEXPRESS_ETH_BASE; _emac.irqno = IRQ_VEXPRESS_A9_ETH; if (smc911x_detect_chip(&_emac)) { rt_kprintf("no smc911x network interface found!\n"); return -1; } /* set INT CFG */ smc911x_reg_write(&_emac, INT_CFG, INT_CFG_IRQ_POL | INT_CFG_IRQ_TYPE); /* test MAC address */ _emac.enetaddr[0] = 0x52; _emac.enetaddr[1] = 0x54; _emac.enetaddr[2] = 0x00; _emac.enetaddr[3] = 0x11; _emac.enetaddr[4] = 0x22; _emac.enetaddr[5] = 0x33; _emac.parent.parent.init = smc911x_emac_init; _emac.parent.parent.open = RT_NULL; _emac.parent.parent.close = RT_NULL; _emac.parent.parent.read = RT_NULL; _emac.parent.parent.write = RT_NULL; _emac.parent.parent.control = smc911x_emac_control; _emac.parent.parent.user_data = RT_NULL; _emac.parent.eth_rx = smc911x_emac_rx; _emac.parent.eth_tx = smc911x_emac_tx; /* register ETH device */ eth_device_init(&(_emac.parent), "e0"); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) { int retval; struct mii_dev *mdiodev = mdio_alloc(); if (!mdiodev) return -ENOMEM; strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN); mdiodev->read = smc911x_miiphy_read; mdiodev->write = smc911x_miiphy_write; retval = mdio_register(mdiodev); if (retval < 0) return retval; } #endif eth_device_linkchange(&_emac.parent, RT_TRUE); return 0; } INIT_APP_EXPORT(smc911x_emac_hw_init); #include int emac(int argc, char** argv) { rt_hw_interrupt_umask(_emac.irqno); return 0; } MSH_CMD_EXPORT(emac, emac dump);