/* * File : core.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2012, RT-Thread Development Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Change Logs: * Date Author Notes * 2012-10-01 Yi Qiu first version * 2012-12-12 heyuanjie87 change endpoint and function handler * 2012-12-30 heyuanjie87 change inferface handler * 2013-04-26 aozima add DEVICEQUALIFIER support. * 2013-07-25 Yi Qiu update for USB CV test * 2017-11-15 ZYH fix ep0 transform error */ #include #include "drivers/usb_common.h" #include "drivers/usb_device.h" static rt_list_t device_list; static rt_size_t rt_usbd_ep_write(udevice_t device, uep_t ep, void *buffer, rt_size_t size); static rt_size_t rt_usbd_ep_read_prepare(udevice_t device, uep_t ep, void *buffer, rt_size_t size); static rt_err_t rt_usbd_ep_assign(udevice_t device, uep_t ep); static rt_err_t rt_usbd_ep_unassign(udevice_t device, uep_t ep); /** * This function will handle get_device_descriptor bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _get_device_descriptor(struct udevice* device, ureq_t setup) { rt_size_t size; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_get_device_descriptor\n")); /* device descriptor wLength should less than USB_DESC_LENGTH_DEVICE*/ size = (setup->wLength > USB_DESC_LENGTH_DEVICE) ? USB_DESC_LENGTH_DEVICE : setup->wLength; /* send device descriptor to endpoint 0 */ rt_usbd_ep0_write(device, (rt_uint8_t*) &device->dev_desc, size); return RT_EOK; } /** * This function will handle get_config_descriptor bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _get_config_descriptor(struct udevice* device, ureq_t setup) { rt_size_t size; ucfg_desc_t cfg_desc; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_get_config_descriptor\n")); cfg_desc = &device->curr_cfg->cfg_desc; size = (setup->wLength > cfg_desc->wTotalLength) ? cfg_desc->wTotalLength : setup->wLength; /* send configuration descriptor to endpoint 0 */ rt_usbd_ep0_write(device, (rt_uint8_t*)cfg_desc, size); return RT_EOK; } /** * This function will handle get_string_descriptor bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful, -RT_ERROR on invalid bRequest. */ static rt_err_t _get_string_descriptor(struct udevice* device, ureq_t setup) { struct ustring_descriptor str_desc; rt_uint8_t index, i; rt_uint32_t len; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_get_string_descriptor\n")); str_desc.type = USB_DESC_TYPE_STRING; index = setup->wValue & 0xFF; if(index == 0xEE) { index = USB_STRING_OS_INDEX; } if(index > USB_STRING_MAX) { rt_kprintf("unknown string index\n"); rt_usbd_ep0_set_stall(device); return -RT_ERROR; } else if(index == USB_STRING_LANGID_INDEX) { str_desc.bLength = 4; str_desc.String[0] = 0x09; str_desc.String[1] = 0x04; } else { len = rt_strlen(device->str[index]); str_desc.bLength = len*2 + 2; for(i=0; istr[index][i]; str_desc.String[i*2 + 1] = 0; } } if (setup->wLength > str_desc.bLength) len = str_desc.bLength; else len = setup->wLength; /* send string descriptor to endpoint 0 */ rt_usbd_ep0_write(device, (rt_uint8_t*)&str_desc, len); return RT_EOK; } static rt_err_t _get_qualifier_descriptor(struct udevice* device, ureq_t setup) { RT_DEBUG_LOG(RT_DEBUG_USB, ("_get_qualifier_descriptor\n")); /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); if(device->dev_qualifier && device->dcd->device_is_hs) { /* send device qualifier descriptor to endpoint 0 */ rt_usbd_ep0_write(device, (rt_uint8_t*)device->dev_qualifier, sizeof(struct usb_qualifier_descriptor)); } else { rt_usbd_ep0_set_stall(device); } return RT_EOK; } /** * This function will handle get_descriptor bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _get_descriptor(struct udevice* device, ureq_t setup) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); if(setup->request_type == USB_REQ_TYPE_DIR_IN) { switch(setup->wValue >> 8) { case USB_DESC_TYPE_DEVICE: _get_device_descriptor(device, setup); break; case USB_DESC_TYPE_CONFIGURATION: _get_config_descriptor(device, setup); break; case USB_DESC_TYPE_STRING: _get_string_descriptor(device, setup); break; case USB_DESC_TYPE_DEVICEQUALIFIER: _get_qualifier_descriptor(device, setup); break; case USB_DESC_TYPE_OTHERSPEED: _get_config_descriptor(device, setup); break; default: rt_kprintf("unsupported descriptor request\n"); rt_usbd_ep0_set_stall(device); break; } } else { rt_kprintf("request direction error\n"); rt_usbd_ep0_set_stall(device); } return RT_EOK; } /** * This function will handle get_interface bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _get_interface(struct udevice* device, ureq_t setup) { rt_uint8_t value; uintf_t intf; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_get_interface\n")); if (device->state != USB_STATE_CONFIGURED) { rt_usbd_ep0_set_stall(device); return -RT_ERROR; } /* find the specified interface and its alternate setting */ intf = rt_usbd_find_interface(device, setup->wIndex & 0xFF, RT_NULL); value = intf->curr_setting->intf_desc->bAlternateSetting; /* send the interface alternate setting to endpoint 0*/ rt_usbd_ep0_write(device, &value, 1); return RT_EOK; } /** * This function will handle set_interface bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _set_interface(struct udevice* device, ureq_t setup) { uintf_t intf; uep_t ep; struct rt_list_node* i; ualtsetting_t setting; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_set_interface\n")); if (device->state != USB_STATE_CONFIGURED) { rt_usbd_ep0_set_stall(device); return -RT_ERROR; } /* find the specified interface */ intf = rt_usbd_find_interface(device, setup->wIndex & 0xFF, RT_NULL); /* set alternate setting to the interface */ rt_usbd_set_altsetting(intf, setup->wValue & 0xFF); setting = intf->curr_setting; /* start all endpoints of the interface alternate setting */ for(i=setting->ep_list.next; i != &setting->ep_list; i=i->next) { ep = (uep_t)rt_list_entry(i, struct uendpoint, list); dcd_ep_disable(device->dcd, ep); dcd_ep_enable(device->dcd, ep); } dcd_ep0_send_status(device->dcd); return RT_EOK; } /** * This function will handle get_config bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _get_config(struct udevice* device, ureq_t setup) { rt_uint8_t value; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_ASSERT(device->curr_cfg != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_get_config\n")); if (device->state == USB_STATE_CONFIGURED) { /* get current configuration */ value = device->curr_cfg->cfg_desc.bConfigurationValue; } else { value = 0; } /* write the current configuration to endpoint 0 */ rt_usbd_ep0_write(device, &value, 1); return RT_EOK; } /** * This function will handle set_config bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _set_config(struct udevice* device, ureq_t setup) { struct rt_list_node *i, *j, *k; uconfig_t cfg; uintf_t intf; ualtsetting_t setting; uep_t ep; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_set_config\n")); if (setup->wValue > device->dev_desc.bNumConfigurations) { rt_usbd_ep0_set_stall(device); return -RT_ERROR; } if (setup->wValue == 0) { RT_DEBUG_LOG(RT_DEBUG_USB, ("address state\n")); device->state = USB_STATE_ADDRESS; goto _exit; } /* set current configuration */ rt_usbd_set_config(device, setup->wValue); cfg = device->curr_cfg; for (i=cfg->func_list.next; i!=&cfg->func_list; i=i->next) { /* run all functiones and their endpoints in the configuration */ ufunction_t func = (ufunction_t)rt_list_entry(i, struct ufunction, list); for(j=func->intf_list.next; j!=&func->intf_list; j=j->next) { intf = (uintf_t)rt_list_entry(j, struct uinterface, list); setting = intf->curr_setting; for(k=setting->ep_list.next; k != &setting->ep_list; k=k->next) { ep = (uep_t)rt_list_entry(k, struct uendpoint, list); /* first disable then enable an endpoint */ dcd_ep_disable(device->dcd, ep); dcd_ep_enable(device->dcd, ep); } } /* after enabled endpoints, then enable function */ FUNC_ENABLE(func); } device->state = USB_STATE_CONFIGURED; _exit: /* issue status stage */ dcd_ep0_send_status(device->dcd); return RT_EOK; } /** * This function will handle set_address bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _set_address(struct udevice* device, ureq_t setup) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); /* set address in device control driver */ dcd_set_address(device->dcd, setup->wValue); /* issue status stage */ dcd_ep0_send_status(device->dcd); RT_DEBUG_LOG(RT_DEBUG_USB, ("_set_address\n")); device->state = USB_STATE_ADDRESS; return RT_EOK; } /** * This function will handle standard bRequest to * interface that defined in function-specifics * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _request_interface(struct udevice* device, ureq_t setup) { uintf_t intf; ufunction_t func; rt_err_t ret; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); RT_DEBUG_LOG(RT_DEBUG_USB, ("_request_interface\n")); intf = rt_usbd_find_interface(device, setup->wIndex & 0xFF, &func); if (intf != RT_NULL) { ret = intf->handler(func, setup); } else { ret = -RT_ERROR; } return ret; } /** * This function will handle standard bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful. */ static rt_err_t _standard_request(struct udevice* device, ureq_t setup) { udcd_t dcd; rt_uint16_t value = 0; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); dcd = device->dcd; switch(setup->request_type & USB_REQ_TYPE_RECIPIENT_MASK) { case USB_REQ_TYPE_DEVICE: switch(setup->bRequest) { case USB_REQ_GET_STATUS: rt_usbd_ep0_write(device, &value, 2); break; case USB_REQ_CLEAR_FEATURE: rt_usbd_clear_feature(device, setup->wValue, setup->wIndex); dcd_ep0_send_status(dcd); break; case USB_REQ_SET_FEATURE: rt_usbd_set_feature(device, setup->wValue, setup->wIndex); break; case USB_REQ_SET_ADDRESS: _set_address(device, setup); break; case USB_REQ_GET_DESCRIPTOR: _get_descriptor(device, setup); break; case USB_REQ_SET_DESCRIPTOR: rt_usbd_ep0_set_stall(device); break; case USB_REQ_GET_CONFIGURATION: _get_config(device, setup); break; case USB_REQ_SET_CONFIGURATION: _set_config(device, setup); break; default: rt_kprintf("unknown device request\n"); rt_usbd_ep0_set_stall(device); break; } break; case USB_REQ_TYPE_INTERFACE: switch(setup->bRequest) { case USB_REQ_GET_INTERFACE: _get_interface(device, setup); break; case USB_REQ_SET_INTERFACE: _set_interface(device, setup); break; default: if (_request_interface(device, setup) != RT_EOK) { rt_kprintf("unknown interface request\n"); rt_usbd_ep0_set_stall(device); return - RT_ERROR; } else break; } break; case USB_REQ_TYPE_ENDPOINT: switch(setup->bRequest) { case USB_REQ_GET_STATUS: { uep_t ep; ep = rt_usbd_find_endpoint(device, RT_NULL, setup->wIndex); value = ep->stalled; rt_usbd_ep0_write(device, &value, 2); } break; case USB_REQ_CLEAR_FEATURE: { uep_t ep; uio_request_t req; struct rt_list_node *node; ep = rt_usbd_find_endpoint(device, RT_NULL, setup->wIndex); if(USB_EP_HALT == setup->wValue && ep->stalled == RT_TRUE) { rt_usbd_clear_feature(device, setup->wValue, setup->wIndex); dcd_ep0_send_status(dcd); ep->stalled = RT_FALSE; for (node = ep->request_list.next; node != &ep->request_list; node = node->next) { req = (uio_request_t)rt_list_entry(node, struct uio_request, list); rt_usbd_io_request(device, ep, req); RT_DEBUG_LOG(RT_DEBUG_USB, ("fired a request\n")); } rt_list_init(&ep->request_list); } } break; case USB_REQ_SET_FEATURE: { uep_t ep; if(USB_EP_HALT == setup->wValue) { ep = rt_usbd_find_endpoint(device, RT_NULL, setup->wIndex); ep->stalled = RT_TRUE; rt_usbd_set_feature(device, setup->wValue, setup->wIndex); dcd_ep0_send_status(dcd); } } break; case USB_REQ_SYNCH_FRAME: break; default: rt_kprintf("unknown endpoint request\n"); rt_usbd_ep0_set_stall(device); break; } break; case USB_REQ_TYPE_OTHER: rt_kprintf("unknown other type request\n"); rt_usbd_ep0_set_stall(device); break; default: rt_kprintf("unknown type request\n"); rt_usbd_ep0_set_stall(device); break; } return RT_EOK; } /** * This function will handle function bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful, -RT_ERROR on invalid bRequest. */ static rt_err_t _function_request(udevice_t device, ureq_t setup) { uintf_t intf; ufunction_t func; /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); /* verify bRequest wValue */ if(setup->wIndex > device->curr_cfg->cfg_desc.bNumInterfaces) { rt_usbd_ep0_set_stall(device); return -RT_ERROR; } switch(setup->request_type & USB_REQ_TYPE_RECIPIENT_MASK) { case USB_REQ_TYPE_INTERFACE: intf = rt_usbd_find_interface(device, setup->wIndex & 0xFF, &func); if(intf == RT_NULL) { rt_kprintf("unkwown interface request\n"); rt_usbd_ep0_set_stall(device); } else { intf->handler(func, setup); } break; case USB_REQ_TYPE_ENDPOINT: break; default: rt_kprintf("unknown function request type\n"); rt_usbd_ep0_set_stall(device); break; } return RT_EOK; } static rt_err_t _vendor_request(udevice_t device, ureq_t setup) { static rt_uint8_t * usb_comp_id_desc = RT_NULL; static rt_uint32_t usb_comp_id_desc_size = 0; usb_os_func_comp_id_desc_t func_comp_id_desc; uintf_t intf; ufunction_t func; switch(setup->bRequest) { case 'A': switch(setup->wIndex) { case 0x04: if(rt_list_len(&device->os_comp_id_desc->func_desc) == 0) { rt_usbd_ep0_set_stall(device); return RT_EOK; } if(usb_comp_id_desc == RT_NULL) { rt_uint8_t * pusb_comp_id_desc; rt_list_t *p; usb_comp_id_desc_size = sizeof(struct usb_os_header_comp_id_descriptor) + (sizeof(struct usb_os_function_comp_id_descriptor)-sizeof(rt_list_t))*rt_list_len(&device->os_comp_id_desc->func_desc); usb_comp_id_desc = (rt_uint8_t *)rt_malloc(usb_comp_id_desc_size); RT_ASSERT(usb_comp_id_desc != RT_NULL); device->os_comp_id_desc->head_desc.dwLength = usb_comp_id_desc_size; pusb_comp_id_desc = usb_comp_id_desc; rt_memcpy((void *)pusb_comp_id_desc,(void *)&device->os_comp_id_desc->head_desc,sizeof(struct usb_os_header_comp_id_descriptor)); pusb_comp_id_desc += sizeof(struct usb_os_header_comp_id_descriptor); for (p = device->os_comp_id_desc->func_desc.next; p != &device->os_comp_id_desc->func_desc; p = p->next) { func_comp_id_desc = rt_list_entry(p,struct usb_os_function_comp_id_descriptor,list); rt_memcpy(pusb_comp_id_desc,(void *)&func_comp_id_desc->bFirstInterfaceNumber, sizeof(struct usb_os_function_comp_id_descriptor)-sizeof(rt_list_t)); pusb_comp_id_desc += sizeof(struct usb_os_function_comp_id_descriptor)-sizeof(rt_list_t); } } rt_usbd_ep0_write(device, (void*)usb_comp_id_desc, setup->wLength); break; case 0x05: intf = rt_usbd_find_interface(device, setup->wValue & 0xFF, &func); if(intf != RT_NULL) { intf->handler(func, setup); } break; } break; } return RT_EOK; } static rt_err_t _dump_setup_packet(ureq_t setup) { RT_DEBUG_LOG(RT_DEBUG_USB, ("[\n")); RT_DEBUG_LOG(RT_DEBUG_USB, (" setup_request : 0x%x\n", setup->request_type)); RT_DEBUG_LOG(RT_DEBUG_USB, (" value : 0x%x\n", setup->wValue)); RT_DEBUG_LOG(RT_DEBUG_USB, (" length : 0x%x\n", setup->wLength)); RT_DEBUG_LOG(RT_DEBUG_USB, (" index : 0x%x\n", setup->wIndex)); RT_DEBUG_LOG(RT_DEBUG_USB, (" request : 0x%x\n", setup->bRequest)); RT_DEBUG_LOG(RT_DEBUG_USB, ("]\n")); return RT_EOK; } /** * This function will handle setup bRequest. * * @param device the usb device object. * @param setup the setup bRequest. * * @return RT_EOK on successful, -RT_ERROR on invalid bRequest. */ static rt_err_t _setup_request(udevice_t device, ureq_t setup) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(setup != RT_NULL); _dump_setup_packet(setup); switch((setup->request_type & USB_REQ_TYPE_MASK)) { case USB_REQ_TYPE_STANDARD: _standard_request(device, setup); break; case USB_REQ_TYPE_CLASS: _function_request(device, setup); break; case USB_REQ_TYPE_VENDOR: _vendor_request(device, setup); break; default: rt_kprintf("unknown setup request type\n"); rt_usbd_ep0_set_stall(device); return -RT_ERROR; } return RT_EOK; } /** * This function will hanle data notify event. * * @param device the usb device object. * @param ep_msg the endpoint message. * * @return RT_EOK. */ static rt_err_t _data_notify(udevice_t device, struct ep_msg* ep_msg) { uep_t ep; ufunction_t func; rt_size_t size = 0; RT_ASSERT(device != RT_NULL); RT_ASSERT(ep_msg != RT_NULL); if (device->state != USB_STATE_CONFIGURED) { return -RT_ERROR; } ep = rt_usbd_find_endpoint(device, &func, ep_msg->ep_addr); if(ep == RT_NULL) { rt_kprintf("invalid endpoint\n"); return -RT_ERROR; } if(EP_ADDRESS(ep) & USB_DIR_IN) { size = ep_msg->size; if(ep->request.remain_size >= EP_MAXPACKET(ep)) { dcd_ep_write(device->dcd, EP_ADDRESS(ep), ep->request.buffer, EP_MAXPACKET(ep)); ep->request.remain_size -= EP_MAXPACKET(ep); ep->request.buffer += EP_MAXPACKET(ep); } else if(ep->request.remain_size > 0) { dcd_ep_write(device->dcd, EP_ADDRESS(ep), ep->request.buffer, ep->request.remain_size); ep->request.remain_size = 0; } else { EP_HANDLER(ep, func, size); } } else { size = ep_msg->size; if(ep->request.remain_size == 0) { return RT_EOK; } if(size == 0) { size = dcd_ep_read(device->dcd, EP_ADDRESS(ep), ep->request.buffer); } ep->request.remain_size -= size; ep->request.buffer += size; if(ep->request.req_type == UIO_REQUEST_READ_BEST) { EP_HANDLER(ep, func, size); } else if(ep->request.remain_size == 0) { EP_HANDLER(ep, func, ep->request.size); } else { dcd_ep_read_prepare(device->dcd, EP_ADDRESS(ep), ep->request.buffer, ep->request.remain_size > EP_MAXPACKET(ep) ? EP_MAXPACKET(ep) : ep->request.remain_size); } } return RT_EOK; } static rt_err_t _ep0_out_notify(udevice_t device, struct ep_msg* ep_msg) { uep_t ep0; rt_size_t size; RT_ASSERT(device != RT_NULL); RT_ASSERT(ep_msg != RT_NULL); RT_ASSERT(device->dcd != RT_NULL); ep0 = &device->dcd->ep0; size = ep_msg->size; if(ep0->request.remain_size == 0) { return RT_EOK; } if(size == 0) { size = dcd_ep_read(device->dcd, EP0_OUT_ADDR, ep0->request.buffer); if(size == 0) { return RT_EOK; } } ep0->request.remain_size -= size; ep0->request.buffer += size; if(ep0->request.remain_size == 0) { /* invoke callback */ if(ep0->rx_indicate != RT_NULL) { ep0->rx_indicate(device, size); } } else { rt_usbd_ep0_read(device, ep0->request.buffer, ep0->request.remain_size,ep0->rx_indicate); } return RT_EOK; } /** * This function will notity sof event to all of function. * * @param device the usb device object. * * @return RT_EOK. */ static rt_err_t _sof_notify(udevice_t device) { struct rt_list_node *i; ufunction_t func; RT_ASSERT(device != RT_NULL); /* to notity every function that sof event comes */ for (i=device->curr_cfg->func_list.next; i!=&device->curr_cfg->func_list; i=i->next) { func = (ufunction_t)rt_list_entry(i, struct ufunction, list); if(func->ops->sof_handler != RT_NULL) func->ops->sof_handler(func); } return RT_EOK; } /** * This function will disable all USB functions. * * @param device the usb device object. * * @return RT_EOK. */ static rt_err_t _stop_notify(udevice_t device) { struct rt_list_node *i; ufunction_t func; RT_ASSERT(device != RT_NULL); /* to notity every function */ for (i = device->curr_cfg->func_list.next; i != &device->curr_cfg->func_list; i = i->next) { func = (ufunction_t)rt_list_entry(i, struct ufunction, list); FUNC_DISABLE(func); } return RT_EOK; } static rt_size_t rt_usbd_ep_write(udevice_t device, uep_t ep, void *buffer, rt_size_t size) { rt_uint16_t maxpacket; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->dcd != RT_NULL); RT_ASSERT(ep != RT_NULL); maxpacket = EP_MAXPACKET(ep); if(ep->request.remain_size >= maxpacket) { dcd_ep_write(device->dcd, EP_ADDRESS(ep), ep->request.buffer, maxpacket); ep->request.remain_size -= maxpacket; ep->request.buffer += maxpacket; } else { dcd_ep_write(device->dcd, EP_ADDRESS(ep), ep->request.buffer, ep->request.remain_size); ep->request.remain_size = 0; } return size; } static rt_size_t rt_usbd_ep_read_prepare(udevice_t device, uep_t ep, void *buffer, rt_size_t size) { RT_ASSERT(device != RT_NULL); RT_ASSERT(device->dcd != RT_NULL); RT_ASSERT(ep != RT_NULL); RT_ASSERT(buffer != RT_NULL); RT_ASSERT(ep->ep_desc != RT_NULL); return dcd_ep_read_prepare(device->dcd, EP_ADDRESS(ep), buffer, size > EP_MAXPACKET(ep) ? EP_MAXPACKET(ep) : size); } /** * This function will create an usb device object. * * @param ustring the usb string array to contain string descriptor. * * @return an usb device object on success, RT_NULL on fail. */ udevice_t rt_usbd_device_new(void) { udevice_t udevice; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_device_new\n")); /* allocate memory for the object */ udevice = rt_malloc(sizeof(struct udevice)); if(udevice == RT_NULL) { rt_kprintf("alloc memery failed\n"); return RT_NULL; } rt_memset(udevice, 0, sizeof(struct udevice)); /* to initialize configuration list */ rt_list_init(&udevice->cfg_list); /* insert the device object to device list */ rt_list_insert_before(&device_list, &udevice->list); return udevice; } /** * This function will set usb device string description. * * @param device the usb device object. * @param ustring pointer to string pointer array. * * @return RT_EOK. */ rt_err_t rt_usbd_device_set_string(udevice_t device, const char** ustring) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(ustring != RT_NULL); /* set string descriptor array to the device object */ device->str = ustring; return RT_EOK; } rt_err_t rt_usbd_device_set_os_comp_id_desc(udevice_t device, usb_os_comp_id_desc_t os_comp_id_desc) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(os_comp_id_desc != RT_NULL); /* set string descriptor array to the device object */ device->os_comp_id_desc = os_comp_id_desc; rt_list_init(&device->os_comp_id_desc->func_desc); return RT_EOK; } rt_err_t rt_usbd_device_set_qualifier(udevice_t device, struct usb_qualifier_descriptor* qualifier) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(qualifier != RT_NULL); device->dev_qualifier = qualifier; return RT_EOK; } /** * This function will set an usb controller driver to a device. * * @param device the usb device object. * @param dcd the usb device controller driver. * * @return RT_EOK on successful. */ rt_err_t rt_usbd_device_set_controller(udevice_t device, udcd_t dcd) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(dcd != RT_NULL); /* set usb device controller driver to the device */ device->dcd = dcd; return RT_EOK; } /** * This function will set an usb device descriptor to a device. * * @param device the usb device object. * @param dev_desc the usb device descriptor. * * @return RT_EOK on successful. */ rt_err_t rt_usbd_device_set_descriptor(udevice_t device, udev_desc_t dev_desc) { /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(dev_desc != RT_NULL); /* copy the usb device descriptor to the device */ rt_memcpy((void *)&device->dev_desc, (void *)dev_desc, USB_DESC_LENGTH_DEVICE); return RT_EOK; } /** * This function will create an usb configuration object. * * @param none. * * @return an usb configuration object. */ uconfig_t rt_usbd_config_new(void) { uconfig_t cfg; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_config_new\n")); /* allocate memory for the object */ cfg = rt_malloc(sizeof(struct uconfig)); if(cfg == RT_NULL) { rt_kprintf("alloc memery failed\n"); return RT_NULL; } rt_memset(cfg, 0, sizeof(struct uconfig)); /* set default wValue */ cfg->cfg_desc.bLength = USB_DESC_LENGTH_CONFIG; cfg->cfg_desc.type = USB_DESC_TYPE_CONFIGURATION; cfg->cfg_desc.wTotalLength = USB_DESC_LENGTH_CONFIG; cfg->cfg_desc.bmAttributes = 0xC0; cfg->cfg_desc.MaxPower = 0x32; /* to initialize function object list */ rt_list_init(&cfg->func_list); return cfg; } /** * This function will create an usb interface object. * * @param device the usb device object. * @handler the callback handler of object * * @return an usb interface object on success, RT_NULL on fail. */ uintf_t rt_usbd_interface_new(udevice_t device, uintf_handler_t handler) { uintf_t intf; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_interface_new\n")); /* parameter check */ RT_ASSERT(device != RT_NULL); /* allocate memory for the object */ intf = (uintf_t)rt_malloc(sizeof(struct uinterface)); if(intf == RT_NULL) { rt_kprintf("alloc memery failed\n"); return RT_NULL; } intf->intf_num = device->nr_intf; device->nr_intf++; intf->handler = handler; intf->curr_setting = RT_NULL; /* to initialize the alternate setting object list */ rt_list_init(&intf->setting_list); return intf; } /** * This function will create an usb alternate setting object. * * @param intf_desc the interface descriptor. * @desc_size the size of the interface descriptor. * * @return an usb alternate setting object on success, RT_NULL on fail. */ ualtsetting_t rt_usbd_altsetting_new(rt_size_t desc_size) { ualtsetting_t setting; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_altsetting_new\n")); /* parameter check */ RT_ASSERT(desc_size > 0); /* allocate memory for the object */ setting = (ualtsetting_t)rt_malloc(sizeof(struct ualtsetting)); if(setting == RT_NULL) { rt_kprintf("alloc memery failed\n"); return RT_NULL; } /* allocate memory for the desc */ setting->desc = rt_malloc(desc_size); if (setting->desc == RT_NULL) { rt_kprintf("alloc desc memery failed\n"); rt_free(setting); return RT_NULL; } setting->desc_size = desc_size; setting->intf_desc = RT_NULL; /* to initialize endpoint list */ rt_list_init(&setting->ep_list); return setting; } /** * This function will config an desc in alternate setting object. * * @param setting the altsetting to be config. * @param desc use it to init desc in setting. * @param intf_pos the offset of interface descriptor in desc. * * @return RT_EOK. */ rt_err_t rt_usbd_altsetting_config_descriptor(ualtsetting_t setting, const void* desc, rt_off_t intf_pos) { RT_ASSERT(setting != RT_NULL); RT_ASSERT(setting->desc !=RT_NULL); rt_memcpy(setting->desc, desc, setting->desc_size); setting->intf_desc = (uintf_desc_t)((char*)setting->desc + intf_pos); return RT_EOK; } /** * This function will create an usb function object. * * @param device the usb device object. * @param dev_desc the device descriptor. * @param ops the operation set. * * @return an usb function object on success, RT_NULL on fail. */ ufunction_t rt_usbd_function_new(udevice_t device, udev_desc_t dev_desc, ufunction_ops_t ops) { ufunction_t func; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_function_new\n")); /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(dev_desc != RT_NULL); /* allocate memory for the object */ func = (ufunction_t)rt_malloc(sizeof(struct ufunction)); if(func == RT_NULL) { rt_kprintf("alloc memery failed\n"); return RT_NULL; } func->dev_desc = dev_desc; func->ops = ops; func->device = device; func->enabled = RT_FALSE; /* to initialize interface list */ rt_list_init(&func->intf_list); return func; } /** * This function will create an usb endpoint object. * * @param ep_desc the endpoint descriptor. * @handler the callback handler of object * * @return an usb endpoint object on success, RT_NULL on fail. */ uep_t rt_usbd_endpoint_new(uep_desc_t ep_desc, udep_handler_t handler) { uep_t ep; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_endpoint_new\n")); /* parameter check */ RT_ASSERT(ep_desc != RT_NULL); /* allocate memory for the object */ ep = (uep_t)rt_malloc(sizeof(struct uendpoint)); if(ep == RT_NULL) { rt_kprintf("alloc memery failed\n"); return RT_NULL; } ep->ep_desc = ep_desc; ep->handler = handler; ep->buffer = RT_NULL; ep->stalled = RT_FALSE; rt_list_init(&ep->request_list); return ep; } /** * This function will find an usb device object. * * @dcd usd device controller driver. * * @return an usb device object on found or RT_NULL on not found. */ udevice_t rt_usbd_find_device(udcd_t dcd) { struct rt_list_node* node; udevice_t device; /* parameter check */ RT_ASSERT(dcd != RT_NULL); /* search a device in the the device list */ for (node = device_list.next; node != &device_list; node = node->next) { device = (udevice_t)rt_list_entry(node, struct udevice, list); if(device->dcd == dcd) return device; } rt_kprintf("can't find device\n"); return RT_NULL; } /** * This function will find an usb configuration object. * * @param device the usb device object. * @param wValue the configuration number. * * @return an usb configuration object on found or RT_NULL on not found. */ uconfig_t rt_usbd_find_config(udevice_t device, rt_uint8_t value) { struct rt_list_node* node; uconfig_t cfg = RT_NULL; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_find_config\n")); /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(value <= device->dev_desc.bNumConfigurations); /* search a configration in the the device */ for (node = device->cfg_list.next; node != &device->cfg_list; node = node->next) { cfg = (uconfig_t)rt_list_entry(node, struct udevice, list); if(cfg->cfg_desc.bConfigurationValue == value) { return cfg; } } rt_kprintf("can't find configuration %d\n", value); return RT_NULL; } /** * This function will find an usb interface object. * * @param device the usb device object. * @param wValue the interface number. * * @return an usb configuration object on found or RT_NULL on not found. */ uintf_t rt_usbd_find_interface(udevice_t device, rt_uint8_t value, ufunction_t *pfunc) { struct rt_list_node *i, *j; ufunction_t func; uintf_t intf; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_find_interface\n")); /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(value < device->nr_intf); /* search an interface in the current configuration */ for (i=device->curr_cfg->func_list.next; i!=&device->curr_cfg->func_list; i=i->next) { func = (ufunction_t)rt_list_entry(i, struct ufunction, list); for(j=func->intf_list.next; j!=&func->intf_list; j=j->next) { intf = (uintf_t)rt_list_entry(j, struct uinterface, list); if(intf->intf_num == value) { if (pfunc != RT_NULL) *pfunc = func; return intf; } } } rt_kprintf("can't find interface %d\n", value); return RT_NULL; } /** * This function will find an usb interface alternate setting object. * * @param device the usb device object. * @param wValue the alternate setting number. * * @return an usb interface alternate setting object on found or RT_NULL on not found. */ ualtsetting_t rt_usbd_find_altsetting(uintf_t intf, rt_uint8_t value) { struct rt_list_node *i; ualtsetting_t setting; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_find_altsetting\n")); /* parameter check */ RT_ASSERT(intf != RT_NULL); if(intf->curr_setting != RT_NULL) { /* if the wValue equal to the current alternate setting, then do not search */ if(intf->curr_setting->intf_desc->bAlternateSetting == value) return intf->curr_setting; } /* search a setting in the alternate setting list */ for(i=intf->setting_list.next; i!=&intf->setting_list; i=i->next) { setting =(ualtsetting_t)rt_list_entry(i, struct ualtsetting, list); if(setting->intf_desc->bAlternateSetting == value) return setting; } rt_kprintf("can't find alternate setting %d\n", value); return RT_NULL; } /** * This function will find an usb endpoint object. * * @param device the usb device object. * @param ep_addr endpoint address. * * @return an usb endpoint object on found or RT_NULL on not found. */ uep_t rt_usbd_find_endpoint(udevice_t device, ufunction_t* pfunc, rt_uint8_t ep_addr) { uep_t ep; struct rt_list_node *i, *j, *k; ufunction_t func; uintf_t intf; /* parameter check */ RT_ASSERT(device != RT_NULL); /* search a endpoint in the current configuration */ for (i=device->curr_cfg->func_list.next; i!=&device->curr_cfg->func_list; i=i->next) { func = (ufunction_t)rt_list_entry(i, struct ufunction, list); for(j=func->intf_list.next; j!=&func->intf_list; j=j->next) { intf = (uintf_t)rt_list_entry(j, struct uinterface, list); for(k=intf->curr_setting->ep_list.next; k!=&intf->curr_setting->ep_list; k=k->next) { ep = (uep_t)rt_list_entry(k, struct uendpoint, list); if(EP_ADDRESS(ep) == ep_addr) { if (pfunc != RT_NULL) *pfunc = func; return ep; } } } } rt_kprintf("can't find endpoint 0x%x\n", ep_addr); return RT_NULL; } /** * This function will add a configuration to an usb device. * * @param device the usb device object. * @param cfg the configuration object. * * @return RT_EOK. */ rt_err_t rt_usbd_device_add_config(udevice_t device, uconfig_t cfg) { struct rt_list_node *i, *j, *k; ufunction_t func; uintf_t intf; uep_t ep; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_device_add_config\n")); /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(cfg != RT_NULL); /* set configuration number to the configuration descriptor */ cfg->cfg_desc.bConfigurationValue = device->dev_desc.bNumConfigurations + 1; device->dev_desc.bNumConfigurations++; for (i=cfg->func_list.next; i!=&cfg->func_list; i=i->next) { func = (ufunction_t)rt_list_entry(i, struct ufunction, list); for(j=func->intf_list.next; j!=&func->intf_list; j=j->next) { intf = (uintf_t)rt_list_entry(j, struct uinterface, list); cfg->cfg_desc.bNumInterfaces++; /* allocate address for every endpoint in the interface alternate setting */ for(k=intf->curr_setting->ep_list.next; k!=&intf->curr_setting->ep_list; k=k->next) { ep = (uep_t)rt_list_entry(k, struct uendpoint, list); if(rt_usbd_ep_assign(device, ep) != RT_EOK) { rt_kprintf("endpoint assign error\n"); } } /* construct complete configuration descriptor */ rt_memcpy((void*)&cfg->cfg_desc.data[cfg->cfg_desc.wTotalLength - USB_DESC_LENGTH_CONFIG], (void*)intf->curr_setting->desc, intf->curr_setting->desc_size); cfg->cfg_desc.wTotalLength += intf->curr_setting->desc_size; } } /* insert the configuration to the list */ rt_list_insert_before(&device->cfg_list, &cfg->list); return RT_EOK; } /** * This function will add a function to a configuration. * * @param cfg the configuration object. * @param func the function object. * * @return RT_EOK. */ rt_err_t rt_usbd_config_add_function(uconfig_t cfg, ufunction_t func) { RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_config_add_function\n")); /* parameter check */ RT_ASSERT(cfg != RT_NULL); RT_ASSERT(func != RT_NULL); /* insert the function to the list */ rt_list_insert_before(&cfg->func_list, &func->list); return RT_EOK; } /** * This function will add an interface to a function. * * @param func the function object. * @param intf the interface object. * * @return RT_EOK. */ rt_err_t rt_usbd_function_add_interface(ufunction_t func, uintf_t intf) { RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_function_add_interface\n")); /* parameter check */ RT_ASSERT(func != RT_NULL); RT_ASSERT(intf != RT_NULL); /* insert the interface to the list */ rt_list_insert_before(&func->intf_list, &intf->list); return RT_EOK; } /** * This function will add an alternate setting to an interface. * * @param intf the interface object. * @param setting the alternate setting object. * * @return RT_EOK. */ rt_err_t rt_usbd_interface_add_altsetting(uintf_t intf, ualtsetting_t setting) { RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_interface_add_altsetting\n")); /* parameter check */ RT_ASSERT(intf != RT_NULL); RT_ASSERT(setting != RT_NULL); setting->intf_desc->bInterfaceNumber = intf->intf_num; /* insert the alternate setting to the list */ rt_list_insert_before(&intf->setting_list, &setting->list); return RT_EOK; } /** * This function will add an endpoint to an alternate setting. * * @param setting the alternate setting object. * @param ep the endpoint object. * * @return RT_EOK. */ rt_err_t rt_usbd_altsetting_add_endpoint(ualtsetting_t setting, uep_t ep) { RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_altsetting_add_endpoint\n")); /* parameter check */ RT_ASSERT(setting != RT_NULL); RT_ASSERT(ep != RT_NULL); /* insert the endpoint to the list */ rt_list_insert_before(&setting->ep_list, &ep->list); return RT_EOK; } rt_err_t rt_usbd_os_comp_id_desc_add_os_func_comp_id_desc(usb_os_comp_id_desc_t os_comp_id_desc, usb_os_func_comp_id_desc_t os_func_comp_id_desc) { RT_ASSERT(os_comp_id_desc != RT_NULL); RT_ASSERT(os_func_comp_id_desc != RT_NULL); rt_list_insert_before(&os_comp_id_desc->func_desc, &os_func_comp_id_desc->list); os_comp_id_desc->head_desc.bCount++; return RT_EOK; } /** * This function will set an alternate setting for an interface. * * @param intf_desc the interface descriptor. * @param wValue the alternate setting number. * * @return RT_EOK. */ rt_err_t rt_usbd_set_altsetting(uintf_t intf, rt_uint8_t value) { ualtsetting_t setting; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_set_altsetting\n")); /* parameter check */ RT_ASSERT(intf != RT_NULL); /* find an alternate setting */ setting = rt_usbd_find_altsetting(intf, value); /* set as current alternate setting */ intf->curr_setting = setting; return RT_EOK; } /** * This function will set a configuration for an usb device. * * @param device the usb device object. * @param wValue the configuration number. * * @return RT_EOK. */ rt_err_t rt_usbd_set_config(udevice_t device, rt_uint8_t value) { uconfig_t cfg; RT_DEBUG_LOG(RT_DEBUG_USB, ("rt_usbd_set_config\n")); /* parameter check */ RT_ASSERT(device != RT_NULL); RT_ASSERT(value <= device->dev_desc.bNumConfigurations); /* find a configuration */ cfg = rt_usbd_find_config(device, value); /* set as current configuration */ device->curr_cfg = cfg; dcd_set_config(device->dcd, value); return RT_TRUE; } /** * This function will bRequest an IO transaction. * * @param device the usb device object. * @param ep the endpoint object. * @param req IO bRequest. * * @return RT_EOK. */ rt_size_t rt_usbd_io_request(udevice_t device, uep_t ep, uio_request_t req) { rt_size_t size = 0; RT_ASSERT(device != RT_NULL); RT_ASSERT(req != RT_NULL); if(ep->stalled == RT_FALSE) { switch(req->req_type) { case UIO_REQUEST_READ_BEST: case UIO_REQUEST_READ_FULL: ep->request.remain_size = ep->request.size; size = rt_usbd_ep_read_prepare(device, ep, req->buffer, req->size); break; case UIO_REQUEST_WRITE: ep->request.remain_size = ep->request.size; size = rt_usbd_ep_write(device, ep, req->buffer, req->size); break; default: rt_kprintf("unknown request type\n"); break; } } else { rt_list_insert_before(&ep->request_list, &req->list); RT_DEBUG_LOG(RT_DEBUG_USB, ("suspend a request\n")); } return size; } /** * This function will set feature for an usb device. * * @param device the usb device object. * @param wValue the configuration number. * * @return RT_EOK. */ rt_err_t rt_usbd_set_feature(udevice_t device, rt_uint16_t value, rt_uint16_t index) { RT_ASSERT(device != RT_NULL); if (value == USB_FEATURE_DEV_REMOTE_WAKEUP) { RT_DEBUG_LOG(RT_DEBUG_USB, ("set feature remote wakeup\n")); } else if (value == USB_FEATURE_ENDPOINT_HALT) { RT_DEBUG_LOG(RT_DEBUG_USB, ("set feature stall\n")); dcd_ep_set_stall(device->dcd, (rt_uint32_t)(index & 0xFF)); } return RT_EOK; } /** * This function will clear feature for an usb device. * * @param device the usb device object. * @param wValue the configuration number. * * @return RT_EOK. */ rt_err_t rt_usbd_clear_feature(udevice_t device, rt_uint16_t value, rt_uint16_t index) { RT_ASSERT(device != RT_NULL); if (value == USB_FEATURE_DEV_REMOTE_WAKEUP) { RT_DEBUG_LOG(RT_DEBUG_USB, ("clear feature remote wakeup\n")); } else if (value == USB_FEATURE_ENDPOINT_HALT) { RT_DEBUG_LOG(RT_DEBUG_USB, ("clear feature stall\n")); dcd_ep_clear_stall(device->dcd, (rt_uint32_t)(index & 0xFF)); } return RT_EOK; } rt_err_t rt_usbd_ep0_set_stall(udevice_t device) { RT_ASSERT(device != RT_NULL); return dcd_ep_set_stall(device->dcd, 0); } rt_err_t rt_usbd_ep0_clear_stall(udevice_t device) { RT_ASSERT(device != RT_NULL); return dcd_ep_clear_stall(device->dcd, 0); } rt_err_t rt_usbd_ep_set_stall(udevice_t device, uep_t ep) { rt_err_t ret; RT_ASSERT(device != RT_NULL); RT_ASSERT(ep != RT_NULL); RT_ASSERT(ep->ep_desc != RT_NULL); ret = dcd_ep_set_stall(device->dcd, EP_ADDRESS(ep)); if(ret == RT_EOK) { ep->stalled = RT_TRUE; } return ret; } rt_err_t rt_usbd_ep_clear_stall(udevice_t device, uep_t ep) { rt_err_t ret; RT_ASSERT(device != RT_NULL); RT_ASSERT(ep != RT_NULL); RT_ASSERT(ep->ep_desc != RT_NULL); ret = dcd_ep_clear_stall(device->dcd, EP_ADDRESS(ep)); if(ret == RT_EOK) { ep->stalled = RT_FALSE; } return ret; } static rt_err_t rt_usbd_ep_assign(udevice_t device, uep_t ep) { int i = 0; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->dcd != RT_NULL); RT_ASSERT(device->dcd->ep_pool != RT_NULL); RT_ASSERT(ep != RT_NULL); RT_ASSERT(ep->ep_desc != RT_NULL); while(device->dcd->ep_pool[i].addr != 0xFF) { if(device->dcd->ep_pool[i].status == ID_UNASSIGNED && ep->ep_desc->bmAttributes == device->dcd->ep_pool[i].type && (EP_ADDRESS(ep) & 0x80) == device->dcd->ep_pool[i].dir) { EP_ADDRESS(ep) |= device->dcd->ep_pool[i].addr; ep->id = &device->dcd->ep_pool[i]; device->dcd->ep_pool[i].status = ID_ASSIGNED; RT_DEBUG_LOG(RT_DEBUG_USB, ("assigned %d\n", device->dcd->ep_pool[i].addr)); return RT_EOK; } i++; } return -RT_ERROR; } static rt_err_t rt_usbd_ep_unassign(udevice_t device, uep_t ep) { RT_ASSERT(device != RT_NULL); RT_ASSERT(device->dcd != RT_NULL); RT_ASSERT(device->dcd->ep_pool != RT_NULL); RT_ASSERT(ep != RT_NULL); RT_ASSERT(ep->ep_desc != RT_NULL); ep->id->status = ID_UNASSIGNED; return RT_EOK; } rt_err_t rt_usbd_ep0_setup_handler(udcd_t dcd, struct urequest* setup) { struct udev_msg msg; rt_size_t size; RT_ASSERT(dcd != RT_NULL); if(setup == RT_NULL) { size = dcd_ep_read(dcd, EP0_OUT_ADDR, (void*)&msg.content.setup); if(size != sizeof(struct urequest)) { rt_kprintf("read setup packet error\n"); return -RT_ERROR; } } else { rt_memcpy((void*)&msg.content.setup, (void*)setup, sizeof(struct urequest)); } msg.type = USB_MSG_SETUP_NOTIFY; msg.dcd = dcd; rt_usbd_event_signal(&msg); return RT_EOK; } rt_err_t rt_usbd_ep0_in_handler(udcd_t dcd) { rt_int32_t remain, mps; RT_ASSERT(dcd != RT_NULL); if (dcd->stage != STAGE_DIN) return RT_EOK; mps = dcd->ep0.id->maxpacket; dcd->ep0.request.remain_size -= mps; remain = dcd->ep0.request.remain_size; if (remain > 0) { if (remain >= mps) { remain = mps; } dcd->ep0.request.buffer += mps; dcd_ep_write(dcd, EP0_IN_ADDR, dcd->ep0.request.buffer, remain); } else { /* last packet is MPS multiple, so send ZLP packet */ if ((remain == 0) && (dcd->ep0.request.size > 0)) { dcd->ep0.request.size = 0; dcd_ep_write(dcd, EP0_IN_ADDR, RT_NULL, 0); } else { /* receive status */ dcd->stage = STAGE_STATUS_OUT; dcd_ep_read_prepare(dcd, EP0_OUT_ADDR, RT_NULL, 0); } } return RT_EOK; } rt_err_t rt_usbd_ep0_out_handler(udcd_t dcd, rt_size_t size) { struct udev_msg msg; RT_ASSERT(dcd != RT_NULL); msg.type = USB_MSG_EP0_OUT; msg.dcd = dcd; msg.content.ep_msg.size = size; rt_usbd_event_signal(&msg); return RT_EOK; } rt_err_t rt_usbd_ep_in_handler(udcd_t dcd, rt_uint8_t address, rt_size_t size) { struct udev_msg msg; RT_ASSERT(dcd != RT_NULL); msg.type = USB_MSG_DATA_NOTIFY; msg.dcd = dcd; msg.content.ep_msg.ep_addr = address; msg.content.ep_msg.size = size; rt_usbd_event_signal(&msg); return RT_EOK; } rt_err_t rt_usbd_ep_out_handler(udcd_t dcd, rt_uint8_t address, rt_size_t size) { struct udev_msg msg; RT_ASSERT(dcd != RT_NULL); msg.type = USB_MSG_DATA_NOTIFY; msg.dcd = dcd; msg.content.ep_msg.ep_addr = address; msg.content.ep_msg.size = size; rt_usbd_event_signal(&msg); return RT_EOK; } rt_err_t rt_usbd_reset_handler(udcd_t dcd) { struct udev_msg msg; RT_ASSERT(dcd != RT_NULL); msg.type = USB_MSG_RESET; msg.dcd = dcd; rt_usbd_event_signal(&msg); return RT_EOK; } rt_err_t rt_usbd_connect_handler(udcd_t dcd) { struct udev_msg msg; RT_ASSERT(dcd != RT_NULL); msg.type = USB_MSG_PLUG_IN; msg.dcd = dcd; rt_usbd_event_signal(&msg); return RT_EOK; } rt_err_t rt_usbd_disconnect_handler(udcd_t dcd) { struct udev_msg msg; RT_ASSERT(dcd != RT_NULL); msg.type = USB_MSG_PLUG_OUT; msg.dcd = dcd; rt_usbd_event_signal(&msg); return RT_EOK; } rt_err_t rt_usbd_sof_handler(udcd_t dcd) { struct udev_msg msg; RT_ASSERT(dcd != RT_NULL); msg.type = USB_MSG_SOF; msg.dcd = dcd; rt_usbd_event_signal(&msg); return RT_EOK; } rt_size_t rt_usbd_ep0_write(udevice_t device, void *buffer, rt_size_t size) { uep_t ep0; rt_size_t sent_size = 0; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->dcd != RT_NULL); RT_ASSERT(buffer != RT_NULL); RT_ASSERT(size > 0); ep0 = &device->dcd->ep0; ep0->request.size = size; ep0->request.buffer = buffer; ep0->request.remain_size = size; if(size >= ep0->id->maxpacket) { sent_size = ep0->id->maxpacket; } else { sent_size = size; } device->dcd->stage = STAGE_DIN; return dcd_ep_write(device->dcd, EP0_IN_ADDR, ep0->request.buffer, sent_size); } rt_size_t rt_usbd_ep0_read(udevice_t device, void *buffer, rt_size_t size, rt_err_t (*rx_ind)(udevice_t device, rt_size_t size)) { uep_t ep0; rt_size_t read_size = 0; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->dcd != RT_NULL); RT_ASSERT(buffer != RT_NULL); ep0 = &device->dcd->ep0; ep0->request.buffer = buffer; ep0->request.remain_size = size; ep0->rx_indicate = rx_ind; if(size >= ep0->id->maxpacket) { read_size = ep0->id->maxpacket; } else { read_size = size; } device->dcd->stage = STAGE_DOUT; dcd_ep_read_prepare(device->dcd, EP0_OUT_ADDR, buffer, read_size); return size; } static struct rt_messagequeue usb_mq; /** * This function is the main entry of usb device thread, it is in charge of * processing all messages received from the usb message buffer. * * @param parameter the parameter of the usb device thread. * * @return none. */ static void rt_usbd_thread_entry(void* parameter) { while(1) { struct udev_msg msg; udevice_t device; /* receive message */ if(rt_mq_recv(&usb_mq, &msg, sizeof(struct udev_msg), RT_WAITING_FOREVER) != RT_EOK ) continue; device = rt_usbd_find_device(msg.dcd); if(device == RT_NULL) { rt_kprintf("invalid usb device\n"); continue; } RT_DEBUG_LOG(RT_DEBUG_USB, ("message type %d\n", msg.type)); switch (msg.type) { case USB_MSG_SOF: _sof_notify(device); break; case USB_MSG_DATA_NOTIFY: /* some buggy drivers will have USB_MSG_DATA_NOTIFY before the core * got configured. */ _data_notify(device, &msg.content.ep_msg); break; case USB_MSG_SETUP_NOTIFY: _setup_request(device, &msg.content.setup); break; case USB_MSG_EP0_OUT: _ep0_out_notify(device, &msg.content.ep_msg); break; case USB_MSG_RESET: RT_DEBUG_LOG(RT_DEBUG_USB, ("reset %d\n", device->state)); if (device->state == USB_STATE_ADDRESS || device->state == USB_STATE_CONFIGURED) _stop_notify(device); device->state = USB_STATE_NOTATTACHED; break; case USB_MSG_PLUG_IN: device->state = USB_STATE_ATTACHED; break; case USB_MSG_PLUG_OUT: device->state = USB_STATE_NOTATTACHED; _stop_notify(device); break; default: rt_kprintf("unknown msg type %d\n", msg.type); break; } } } /** * This function will post an message to usb message queue, * * @param msg the message to be posted * @param size the size of the message . * * @return the error code, RT_EOK on successfully. */ rt_err_t rt_usbd_event_signal(struct udev_msg* msg) { RT_ASSERT(msg != RT_NULL); /* send message to usb message queue */ return rt_mq_send(&usb_mq, (void*)msg, sizeof(struct udev_msg)); } ALIGN(RT_ALIGN_SIZE) static rt_uint8_t usb_thread_stack[RT_USBD_THREAD_STACK_SZ]; static struct rt_thread usb_thread; #define USBD_MQ_MSG_SZ 32 #define USBD_MQ_MAX_MSG 16 /* internal of the message queue: every message is associated with a pointer, * so in order to recveive USBD_MQ_MAX_MSG messages, we have to allocate more * than USBD_MQ_MSG_SZ*USBD_MQ_MAX_MSG memery. */ static rt_uint8_t usb_mq_pool[(USBD_MQ_MSG_SZ+sizeof(void*))*USBD_MQ_MAX_MSG]; /** * This function will initialize usb device thread. * * @return none. * */ rt_err_t rt_usbd_core_init(void) { rt_list_init(&device_list); /* create an usb message queue */ rt_mq_init(&usb_mq, "usbd", usb_mq_pool, USBD_MQ_MSG_SZ, sizeof(usb_mq_pool), RT_IPC_FLAG_FIFO); /* init usb device thread */ rt_thread_init(&usb_thread, "usbd", rt_usbd_thread_entry, RT_NULL, usb_thread_stack, RT_USBD_THREAD_STACK_SZ, RT_USBD_THREAD_PRIO, 20); /* rt_thread_init should always be OK, so start the thread without further * checking. */ return rt_thread_startup(&usb_thread); }