提交 e1f25254 编写于 作者: wuyangyong's avatar wuyangyong

Perfect the AT45DB driver

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@332 bbd45198-f89e-11dd-88c7-29a3b14d5316
上级 d088d601
#include "stm32f10x.h"
#include "usb_lib.h"
#include "usb_istr.h"
#include "hw_config.h"
#include "usb_pwr.h"
#include "rtthread.h"
extern uint32_t Mass_Memory_Size[3];
extern uint32_t Mass_Block_Size[3];
extern uint32_t Mass_Block_Count[3];
extern rt_device_t dev_sdio;
extern rt_device_t dev_spi_flash;
#include <finsh.h>
#include "sdcard.h"
void USB_cable(void)
{
rt_device_t dev = RT_NULL;
SD_CardInfo * sdio_info = RT_NULL;
dev = rt_device_find("sd0");
/* SPI_FLASH */
dev_spi_flash = rt_device_find("spi0");
Mass_Block_Size[1] = 512;
Mass_Block_Count[1] = 4096;
Mass_Memory_Size[1] = 4096*512;
if(dev != RT_NULL)
{
dev_sdio = dev;
sdio_info = (SD_CardInfo *)dev->private;
Mass_Memory_Size[0] = sdio_info->CardCapacity;
Mass_Block_Size[0] = sdio_info->CardBlockSize;
Mass_Block_Count[0] = Mass_Memory_Size[0] / Mass_Block_Size[0];
}
else
{
rt_kprintf("\r\nNo find the device sd0 !!!!");
}
/* 3:NAND */
/* usb msc up*/
Set_System();
Set_USBClock();
USB_Interrupts_Config();
USB_Init();
}
FINSH_FUNCTION_EXPORT(USB_cable, cable_the_usb);
#include "stm32f10x.h"
#include "usb_lib.h"
#include "usb_istr.h"
#include "hw_config.h"
#include "usb_pwr.h"
#include "rtthread.h"
extern uint32_t Mass_Memory_Size[3];
extern uint32_t Mass_Block_Size[3];
extern uint32_t Mass_Block_Count[3];
extern rt_device_t dev_sdio;
extern rt_device_t dev_spi_flash;
#include <finsh.h>
#include "sdcard.h"
void USB_cable(void)
{
rt_device_t dev = RT_NULL;
SD_CardInfo * sdio_info = RT_NULL;
dev = rt_device_find("sd0");
{
SPI_InitTypeDef SPI_InitStructure;
/*------------------------ SPI1 configuration ------------------------*/
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;//SPI_Direction_1Line_Tx;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16;/* 72M/64=1.125M */
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_I2S_DeInit(SPI1);
SPI_Init(SPI1, &SPI_InitStructure);
/* Enable SPI_MASTER */
SPI_Cmd(SPI1, ENABLE);
SPI_CalculateCRC(SPI1, DISABLE);
}
/* SPI_FLASH */
dev_spi_flash = rt_device_find("spi0");
Mass_Block_Size[1] = 512;
Mass_Block_Count[1] = 4096;
Mass_Memory_Size[1] = 4096*512;
if(dev != RT_NULL)
{
dev_sdio = dev;
sdio_info = (SD_CardInfo *)dev->private;
Mass_Memory_Size[0] = sdio_info->CardCapacity;
Mass_Block_Size[0] = sdio_info->CardBlockSize;
Mass_Block_Count[0] = Mass_Memory_Size[0] / Mass_Block_Size[0];
}
else
{
rt_kprintf("\r\nNo find the device sd0 !!!!");
}
/* 3:NAND */
/* usb msc up*/
Set_System();
Set_USBClock();
USB_Interrupts_Config();
USB_Init();
}
FINSH_FUNCTION_EXPORT(USB_cable, cable_the_usb);
/*
* File : board.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2009 RT-Thread Develop Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2006-08-23 Bernard first implementation
*/
#include <rthw.h>
#include <rtthread.h>
#include "stm32f10x.h"
#include "board.h"
static void rt_hw_console_init(void);
/**
* @addtogroup STM32
*/
/*@{*/
/*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;
/* RCC system reset(for debug purpose) */
RCC_DeInit();
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if (HSEStartUpStatus == SUCCESS)
{
/* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1);
/* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2);
/* Flash 2 wait state */
FLASH_SetLatency(FLASH_Latency_2);
/* Enable Prefetch Buffer */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) ;
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while (RCC_GetSYSCLKSource() != 0x08) ;
}
}
/*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configures Vector Table base location.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_Configuration(void)
{
#ifdef VECT_TAB_RAM
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
/*
* set priority group:
* 2 bits for pre-emption priority
* 2 bits for subpriority
*/
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
}
/*******************************************************************************
* Function Name : SysTick_Configuration
* Description : Configures the SysTick for OS tick.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void SysTick_Configuration(void)
{
RCC_ClocksTypeDef rcc_clocks;
rt_uint32_t cnts;
RCC_GetClocksFreq(&rcc_clocks);
cnts = (rt_uint32_t)rcc_clocks.HCLK_Frequency / RT_TICK_PER_SECOND;
SysTick_Config(cnts);
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK);
}
extern void rt_hw_interrupt_thread_switch(void);
/**
* This is the timer interrupt service routine.
*
*/
void rt_hw_timer_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
/* NAND Flash */
#include "fsmc_nand.h"
/**
* This function will initial STM32 Radio board.
*/
extern void FSMC_SRAM_Init(void);
void rt_hw_board_init()
{
NAND_IDTypeDef NAND_ID;
/* Configure the system clocks */
RCC_Configuration();
/* DM9000A */
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);
GPIO_SetBits(GPIOE,GPIO_Pin_5);
}
/* NVIC Configuration */
NVIC_Configuration();
/* Configure the SysTick */
SysTick_Configuration();
/* Console Initialization*/
rt_hw_console_init();
/* FSMC Initialization */
FSMC_NAND_Init();
/* NAND read ID command */
FSMC_NAND_ReadID(&NAND_ID);
rt_kprintf("\r\n\r\nRead the NAND ID:%02X%02X%02X%02X",NAND_ID.Maker_ID,NAND_ID.Device_ID,NAND_ID.Third_ID,NAND_ID.Fourth_ID);
/* SRAM init */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
FSMC_SRAM_Init();
/* memtest */
{
unsigned char * p_extram = (unsigned char *)0x68000000;
unsigned int temp;
rt_kprintf("\r\nmem testing....");
for(temp=0; temp<0x80000; temp++)
{
*p_extram++ = (unsigned char)temp;
}
p_extram = (unsigned char *)0x68000000;
for(temp=0; temp<0x80000; temp++)
{
if( *p_extram++ != (unsigned char)temp )
{
rt_kprintf("\rmemtest fail @ %08X\r\nsystem halt!!!!!",(unsigned int)p_extram);
while(1);
}
}
rt_kprintf("\rmem test pass!!\r\n");
}/* memtest */
{
/* PC6 for SDCard Rst */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOC,&GPIO_InitStructure);
GPIO_SetBits(GPIOC,GPIO_Pin_6);
}
/* SPI1 config */
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
/* Enable SPI1 Periph clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA
| RCC_APB2Periph_AFIO | RCC_APB2Periph_SPI1,
ENABLE);
/* Configure SPI1 pins: PA5-SCK, PA6-MISO and PA7-MOSI */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/*------------------------ SPI1 configuration ------------------------*/
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;//SPI_Direction_1Line_Tx;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;/* 72M/64=1.125M */
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(SPI1, &SPI_InitStructure);
/* Enable SPI_MASTER */
SPI_Cmd(SPI1, ENABLE);
SPI_CalculateCRC(SPI1, DISABLE);
}
}/* rt_hw_board_init */
#if STM32_CONSOLE_USART == 1
#define CONSOLE_RX_PIN GPIO_Pin_9
#define CONSOLE_TX_PIN GPIO_Pin_10
#define CONSOLE_GPIO GPIOA
#define CONSOLE_USART USART1
#elif STM32_CONSOLE_USART == 2
#if defined(STM32_LD) || defined(STM32_MD)
#define CONSOLE_RX_PIN GPIO_Pin_6
#define CONSOLE_TX_PIN GPIO_Pin_5
#define CONSOLE_GPIO GPIOD
#elif defined(STM32_HD)
#define CONSOLE_RX_PIN GPIO_Pin_3
#define CONSOLE_TX_PIN GPIO_Pin_2
#define CONSOLE_GPIO GPIOA
#endif
#define CONSOLE_USART USART2
#elif STM32_CONSOLE_USART == 2
#define CONSOLE_RX_PIN GPIO_Pin_11
#define CONSOLE_TX_PIN GPIO_Pin_10
#define CONSOLE_GPIO GPIOB
#define CONSOLE_USART USART3
#endif
/* init console to support rt_kprintf */
static void rt_hw_console_init()
{
/* Enable USART1 and GPIOA clocks */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1
| RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC
| RCC_APB2Periph_GPIOF, ENABLE);
#if STM32_CONSOLE_USART == 0
#else
/* GPIO configuration */
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure USART1 Tx (PA.09) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = CONSOLE_RX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(CONSOLE_GPIO, &GPIO_InitStructure);
/* Configure USART1 Rx (PA.10) as input floating */
GPIO_InitStructure.GPIO_Pin = CONSOLE_TX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(CONSOLE_GPIO, &GPIO_InitStructure);
}
/* USART configuration */
{
USART_InitTypeDef USART_InitStructure;
/* USART configured as follow:
- BaudRate = 115200 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
- USART Clock disabled
- USART CPOL: Clock is active low
- USART CPHA: Data is captured on the middle
- USART LastBit: The clock pulse of the last data bit is not output to
the SCLK pin
*/
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(CONSOLE_USART, &USART_InitStructure);
/* Enable USART1 */
USART_Cmd(CONSOLE_USART, ENABLE);
}
#endif
}
/* write one character to serial, must not trigger interrupt */
static void rt_hw_console_putc(const char c)
{
/*
to be polite with serial console add a line feed
to the carriage return character
*/
if (c=='\n')rt_hw_console_putc('\r');
while (!(CONSOLE_USART->SR & USART_FLAG_TXE));
CONSOLE_USART->DR = (c & 0x1FF);
}
/**
* This function is used by rt_kprintf to display a string on console.
*
* @param str the displayed string
*/
void rt_hw_console_output(const char* str)
{
#if STM32_CONSOLE_USART == 0
/* no console */
#else
while (*str)
{
rt_hw_console_putc (*str++);
}
#endif
}
/*@}*/
/*
* File : board.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2009 RT-Thread Develop Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2006-08-23 Bernard first implementation
*/
#include <rthw.h>
#include <rtthread.h>
#include "stm32f10x.h"
#include "board.h"
static void rt_hw_console_init(void);
/**
* @addtogroup STM32
*/
/*@{*/
/*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;
/* RCC system reset(for debug purpose) */
RCC_DeInit();
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if (HSEStartUpStatus == SUCCESS)
{
/* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1);
/* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2);
/* Flash 2 wait state */
FLASH_SetLatency(FLASH_Latency_2);
/* Enable Prefetch Buffer */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) ;
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while (RCC_GetSYSCLKSource() != 0x08) ;
}
}
/*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configures Vector Table base location.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_Configuration(void)
{
#ifdef VECT_TAB_RAM
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
/*
* set priority group:
* 2 bits for pre-emption priority
* 2 bits for subpriority
*/
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
}
/*******************************************************************************
* Function Name : SysTick_Configuration
* Description : Configures the SysTick for OS tick.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void SysTick_Configuration(void)
{
RCC_ClocksTypeDef rcc_clocks;
rt_uint32_t cnts;
RCC_GetClocksFreq(&rcc_clocks);
cnts = (rt_uint32_t)rcc_clocks.HCLK_Frequency / RT_TICK_PER_SECOND;
SysTick_Config(cnts);
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK);
}
extern void rt_hw_interrupt_thread_switch(void);
/**
* This is the timer interrupt service routine.
*
*/
void rt_hw_timer_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
/* NAND Flash */
#include "fsmc_nand.h"
/**
* This function will initial STM32 Radio board.
*/
extern void FSMC_SRAM_Init(void);
void rt_hw_board_init()
{
NAND_IDTypeDef NAND_ID;
/* Configure the system clocks */
RCC_Configuration();
/* DM9000A */
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOE,&GPIO_InitStructure);
GPIO_SetBits(GPIOE,GPIO_Pin_5);
}
/* NVIC Configuration */
NVIC_Configuration();
/* Configure the SysTick */
SysTick_Configuration();
/* Console Initialization*/
rt_hw_console_init();
/* FSMC Initialization */
FSMC_NAND_Init();
/* NAND read ID command */
FSMC_NAND_ReadID(&NAND_ID);
rt_kprintf("\r\n\r\nRead the NAND ID:%02X%02X%02X%02X",NAND_ID.Maker_ID,NAND_ID.Device_ID,NAND_ID.Third_ID,NAND_ID.Fourth_ID);
/* SRAM init */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
FSMC_SRAM_Init();
/* memtest */
{
unsigned char * p_extram = (unsigned char *)0x68000000;
unsigned int temp;
rt_kprintf("\r\nmem testing....");
for(temp=0; temp<0x80000; temp++)
{
*p_extram++ = (unsigned char)temp;
}
p_extram = (unsigned char *)0x68000000;
for(temp=0; temp<0x80000; temp++)
{
if( *p_extram++ != (unsigned char)temp )
{
rt_kprintf("\rmemtest fail @ %08X\r\nsystem halt!!!!!",(unsigned int)p_extram);
while(1);
}
}
rt_kprintf("\rmem test pass!!\r\n");
}/* memtest */
{
/* PC6 for SDCard Rst */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOC,&GPIO_InitStructure);
GPIO_SetBits(GPIOC,GPIO_Pin_6);
}
/* SPI1 config */
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
/* Enable SPI1 Periph clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA
| RCC_APB2Periph_AFIO | RCC_APB2Periph_SPI1,
ENABLE);
/* Configure SPI1 pins: PA5-SCK, PA6-MISO and PA7-MOSI */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/*------------------------ SPI1 configuration ------------------------*/
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;//SPI_Direction_1Line_Tx;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64;/* 72M/64=1.125M */
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_I2S_DeInit(SPI1);
SPI_Init(SPI1, &SPI_InitStructure);
/* Enable SPI_MASTER */
SPI_Cmd(SPI1, ENABLE);
SPI_CalculateCRC(SPI1, DISABLE);
}
}/* rt_hw_board_init */
#if STM32_CONSOLE_USART == 1
#define CONSOLE_RX_PIN GPIO_Pin_9
#define CONSOLE_TX_PIN GPIO_Pin_10
#define CONSOLE_GPIO GPIOA
#define CONSOLE_USART USART1
#elif STM32_CONSOLE_USART == 2
#if defined(STM32_LD) || defined(STM32_MD)
#define CONSOLE_RX_PIN GPIO_Pin_6
#define CONSOLE_TX_PIN GPIO_Pin_5
#define CONSOLE_GPIO GPIOD
#elif defined(STM32_HD)
#define CONSOLE_RX_PIN GPIO_Pin_3
#define CONSOLE_TX_PIN GPIO_Pin_2
#define CONSOLE_GPIO GPIOA
#endif
#define CONSOLE_USART USART2
#elif STM32_CONSOLE_USART == 2
#define CONSOLE_RX_PIN GPIO_Pin_11
#define CONSOLE_TX_PIN GPIO_Pin_10
#define CONSOLE_GPIO GPIOB
#define CONSOLE_USART USART3
#endif
/* init console to support rt_kprintf */
static void rt_hw_console_init()
{
/* Enable USART1 and GPIOA clocks */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1
| RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOC
| RCC_APB2Periph_GPIOF, ENABLE);
#if STM32_CONSOLE_USART == 0
#else
/* GPIO configuration */
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure USART1 Tx (PA.09) as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = CONSOLE_RX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(CONSOLE_GPIO, &GPIO_InitStructure);
/* Configure USART1 Rx (PA.10) as input floating */
GPIO_InitStructure.GPIO_Pin = CONSOLE_TX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(CONSOLE_GPIO, &GPIO_InitStructure);
}
/* USART configuration */
{
USART_InitTypeDef USART_InitStructure;
/* USART configured as follow:
- BaudRate = 115200 baud
- Word Length = 8 Bits
- One Stop Bit
- No parity
- Hardware flow control disabled (RTS and CTS signals)
- Receive and transmit enabled
- USART Clock disabled
- USART CPOL: Clock is active low
- USART CPHA: Data is captured on the middle
- USART LastBit: The clock pulse of the last data bit is not output to
the SCLK pin
*/
USART_InitStructure.USART_BaudRate = 115200;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(CONSOLE_USART, &USART_InitStructure);
/* Enable USART1 */
USART_Cmd(CONSOLE_USART, ENABLE);
}
#endif
}
/* write one character to serial, must not trigger interrupt */
static void rt_hw_console_putc(const char c)
{
/*
to be polite with serial console add a line feed
to the carriage return character
*/
if (c=='\n')rt_hw_console_putc('\r');
while (!(CONSOLE_USART->SR & USART_FLAG_TXE));
CONSOLE_USART->DR = (c & 0x1FF);
}
/**
* This function is used by rt_kprintf to display a string on console.
*
* @param str the displayed string
*/
void rt_hw_console_output(const char* str)
{
#if STM32_CONSOLE_USART == 0
/* no console */
#else
while (*str)
{
rt_hw_console_putc (*str++);
}
#endif
}
/*@}*/
#include <stm32f10x.h>
//#include "spi_flash.h"
#include <string.h>
extern unsigned char SPI_WriteByte(unsigned char data);
/********************** hardware *************************************/
/* SPI_FLASH_CS PA4 */
/* SPI_FLASH_RST PA3 */
#define FLASH_RST_0() GPIO_ResetBits(GPIOA,GPIO_Pin_3)
#define FLASH_RST_1() GPIO_SetBits(GPIOA,GPIO_Pin_3)
#define FLASH_CS_0() GPIO_ResetBits(GPIOA,GPIO_Pin_4)
#define FLASH_CS_1() GPIO_SetBits(GPIOA,GPIO_Pin_4)
/********************** hardware *************************************/
static void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA,&GPIO_InitStructure);
FLASH_RST_0(); // RESET
FLASH_RST_1();
}
static unsigned char SPI_HostReadByte(void)
{
return SPI_WriteByte(0x00);
}
static void SPI_HostWriteByte(unsigned char wByte)
{
SPI_WriteByte(wByte);
}
/******************************************************************************/
/*Status Register Format: */
/* ----------------------------------------------------------------------- */
/* | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | */
/* |--------|--------|--------|--------|--------|--------|--------|--------| */
/* |RDY/BUSY| COMP | 0 | 1 | 1 | 1 | X | X | */
/* ----------------------------------------------------------------------- */
/* bit7 - 忙标记,0为忙1为不忙。 */
/* 当Status Register的位0移出之后,接下来的时钟脉冲序列将使SPI器件继续*/
/* 将最新的状态字节送出。 */
/* bit6 - 标记最近一次Main Memory Page和Buffer的比较结果,0相同,1不同。 */
/* bit5 */
/* bit4 */
/* bit3 */
/* bit2 - 这4位用来标记器件密度,对于AT45DB041B,这4位应该是0111,一共能标记 */
/* 16种不同密度的器件。 */
/* bit1 */
/* bit0 - 这2位暂时无效 */
/******************************************************************************/
static unsigned char AT45DB_StatusRegisterRead(void)
{
unsigned char i;
FLASH_CS_0();
SPI_HostWriteByte(0xd7);
i=SPI_HostReadByte();
FLASH_CS_1();
return i;
}
static void wait_busy(void)
{
unsigned int i=0;
while (i++<2000)
{
if (AT45DB_StatusRegisterRead()&0x80)
{
break;
}
}
}
static void read_page(unsigned int page,unsigned char * pHeader)
{
unsigned int i=0;
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(0x53);
SPI_HostWriteByte((unsigned char)(page >> 6));
SPI_HostWriteByte((unsigned char)(page << 2));
SPI_HostWriteByte(0x00);
FLASH_CS_1();
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(0xD4);
SPI_HostWriteByte(0x00);
SPI_HostWriteByte(0x00);
SPI_HostWriteByte(0x00);
SPI_HostWriteByte(0x00);
for (i=0; i<512; i++)
{
*pHeader++ = SPI_HostReadByte();
}
FLASH_CS_1();
}
static void write_page(unsigned int page,unsigned char * pHeader)
{
unsigned int i;
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(0x87);
SPI_HostWriteByte(0);
SPI_HostWriteByte(0);
SPI_HostWriteByte(0);
for(i=0; i<512; i++)
{
SPI_HostWriteByte(*pHeader++);
}
FLASH_CS_1();
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(0x86);
SPI_HostWriteByte((unsigned char)(page>>6));
SPI_HostWriteByte((unsigned char)(page<<2));
SPI_HostWriteByte(0x00);
FLASH_CS_1();
}
#include <rtthread.h>
/* SPI DEVICE */
static struct rt_device spi_flash_device;
/* RT-Thread Device Driver Interface */
static rt_err_t rt_spi_flash_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_spi_flash_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_spi_flash_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_spi_flash_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
return RT_EOK;
}
static rt_size_t rt_spi_flash_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
/* only supply single block read: block size 512Byte */
read_page(pos/512,buffer);
return RT_EOK;
}
static rt_size_t rt_spi_flash_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
/* only supply single block write: block size 512Byte */
write_page(pos/512,(unsigned char*)buffer);
return RT_EOK;
}
void rt_hw_spi_flash_init(void)
{
GPIO_Configuration();
/* register spi_flash device */
spi_flash_device.init = rt_spi_flash_init;
spi_flash_device.open = rt_spi_flash_open;
spi_flash_device.close = rt_spi_flash_close;
spi_flash_device.read = rt_spi_flash_read;
spi_flash_device.write = rt_spi_flash_write;
spi_flash_device.control = rt_spi_flash_control;
/* no private */
spi_flash_device.private = RT_NULL;
rt_device_register(&spi_flash_device, "spi0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
}
#include <stm32f10x.h>
#include "spi_flash.h"
extern unsigned char SPI_WriteByte(unsigned char data);
/********************** hardware *************************************/
/* SPI_FLASH_CS PA4 */
/* SPI_FLASH_RST PA3 */
#define FLASH_RST_0() GPIO_ResetBits(GPIOA,GPIO_Pin_3)
#define FLASH_RST_1() GPIO_SetBits(GPIOA,GPIO_Pin_3)
#define FLASH_CS_0() GPIO_ResetBits(GPIOA,GPIO_Pin_4)
#define FLASH_CS_1() GPIO_SetBits(GPIOA,GPIO_Pin_4)
/********************** hardware *************************************/
static void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA,&GPIO_InitStructure);
FLASH_RST_0(); // RESET
FLASH_RST_1();
}
static unsigned char SPI_HostReadByte(void)
{
return SPI_WriteByte(0x00);
}
static void SPI_HostWriteByte(unsigned char wByte)
{
SPI_WriteByte(wByte);
}
/*****************************************************************************/
/*Status Register Format: */
/* ------------------------------------------------------------------------- */
/* | bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 | */
/* |--------|--------|--------|--------|--------|--------|--------|--------| */
/* |RDY/BUSY| COMP | device density | X | X | */
/* ------------------------------------------------------------------------- */
/* 0:busy | | AT45DB041:0111 | protect|page size */
/* 1:ready | | AT45DB161:1011 | */
/* --------------------------------------------------------------------------*/
/*****************************************************************************/
static unsigned char AT45DB_StatusRegisterRead(void)
{
unsigned char i;
FLASH_CS_0();
SPI_HostWriteByte(AT45DB_READ_STATE_REGISTER);
i=SPI_HostReadByte();
FLASH_CS_1();
return i;
}
static void wait_busy(void)
{
unsigned int i=0;
while (i++<2000)
{
if (AT45DB_StatusRegisterRead()&0x80)
{
break;
}
}
}
static void read_page(unsigned int page,unsigned char * pHeader)
{
unsigned int i=0;
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(AT45DB_MM_PAGE_TO_B1_XFER);
SPI_HostWriteByte((unsigned char)(page >> 6));
SPI_HostWriteByte((unsigned char)(page << 2));
SPI_HostWriteByte(0x00);
FLASH_CS_1();
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(AT45DB_BUFFER_1_READ);
SPI_HostWriteByte(0x00);
SPI_HostWriteByte(0x00);
SPI_HostWriteByte(0x00);
SPI_HostWriteByte(0x00);
for (i=0; i<512; i++)
{
*pHeader++ = SPI_HostReadByte();
}
FLASH_CS_1();
}
static void write_page(unsigned int page,unsigned char * pHeader)
{
unsigned int i;
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(AT45DB_BUFFER_2_WRITE);
SPI_HostWriteByte(0);
SPI_HostWriteByte(0);
SPI_HostWriteByte(0);
for(i=0; i<512; i++)
{
SPI_HostWriteByte(*pHeader++);
}
FLASH_CS_1();
wait_busy();
FLASH_CS_0();
SPI_HostWriteByte(AT45DB_B2_TO_MM_PAGE_PROG_WITH_ERASE);
SPI_HostWriteByte((unsigned char)(page>>6));
SPI_HostWriteByte((unsigned char)(page<<2));
SPI_HostWriteByte(0x00);
FLASH_CS_1();
}
#include <rtthread.h>
/* SPI DEVICE */
static struct rt_device spi_flash_device;
/* RT-Thread Device Driver Interface */
static rt_err_t rt_spi_flash_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_spi_flash_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_spi_flash_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_spi_flash_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
return RT_EOK;
}
static rt_size_t rt_spi_flash_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
/* only supply single block read: block size 512Byte */
read_page(pos/512,buffer);
return RT_EOK;
}
static rt_size_t rt_spi_flash_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
/* only supply single block write: block size 512Byte */
write_page(pos/512,(unsigned char*)buffer);
return RT_EOK;
}
void rt_hw_spi_flash_init(void)
{
GPIO_Configuration();
/* register spi_flash device */
spi_flash_device.init = rt_spi_flash_init;
spi_flash_device.open = rt_spi_flash_open;
spi_flash_device.close = rt_spi_flash_close;
spi_flash_device.read = rt_spi_flash_read;
spi_flash_device.write = rt_spi_flash_write;
spi_flash_device.control = rt_spi_flash_control;
/* no private */
spi_flash_device.private = RT_NULL;
rt_device_register(&spi_flash_device, "spi0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
}
#ifndef SPI_FLASH_H_INCLUDED
#define SPI_FLASH_H_INCLUDED
extern void rt_hw_spi_flash_init(void);
#endif // SPI_FLASH_H_INCLUDED
#ifndef SPI_FLASH_H_INCLUDED
#define SPI_FLASH_H_INCLUDED
/*
user for AT45DB161.
copy form : http://www.ourdev.cn/bbs/bbs_content.jsp?bbs_sn=737106
thanks to gxlujd.
*/
#define AT45DB_BUFFER_1_WRITE 0x84 /* 写入第一缓冲区 */
#define AT45DB_BUFFER_2_WRITE 0x87 /* 写入第二缓冲区 */
#define AT45DB_BUFFER_1_READ 0xD4 /* 读取第一缓冲区 */
#define AT45DB_BUFFER_2_READ 0xD6 /* 读取第二缓冲区 */
#define AT45DB_B1_TO_MM_PAGE_PROG_WITH_ERASE 0x83 /* 将第一缓冲区的数据写入主存储器(擦除模式)*/
#define AT45DB_B2_TO_MM_PAGE_PROG_WITH_ERASE 0x86 /* 将第二缓冲区的数据写入主存储器(擦除模式)*/
#define AT45DB_MM_PAGE_TO_B1_XFER 0x53 /* 将主存储器的指定页数据加载到第一缓冲区 */
#define AT45DB_MM_PAGE_TO_B2_XFER 0x55 /* 将主存储器的指定页数据加载到第二缓冲区 */
#define AT45DB_PAGE_ERASE 0x81 /* 页删除(每页512/528字节) */
#define AT45DB_SECTOR_ERASE 0x7C /* 扇区擦除(每扇区128K字节)*/
#define AT45DB_READ_STATE_REGISTER 0xD7 /* 读取状态寄存器 */
extern void rt_hw_spi_flash_init(void);
#endif /* SPI_FLASH_H_INCLUDED */
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册