
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 3: Word Window Classification, 
Neural Networks, and Matrix Calculus

Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning and Richard Socher

Lecture 2: Word Vectors



1. Course plan: coming up

Week 2: We learn neural net fundamentals 
• We concentrate on understanding (deep, multi-layer) neural 

networks and how they can be trained (learned from data) using 
backpropagation (the judicious application of matrix calculus)

• We’ll look at an NLP classifier that adds context by taking in 
windows around a word and classifies the center word (not just 
representing it across all windows)!

Week 3: We learn some natural language processing
• We learn about putting syntactic structure (dependency parses) 

over sentence (this is HW3!)
• We develop the notion of the probability of a sentence (a 

probabilistic language model) and why it is really useful
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Homeworks

• HW1 was due … a couple of minutes ago!
• We hope you’ve submitted it already!
• Try not to burn your late days on this easy first assignment!

• HW2 is now out
• Written part: gradient derivations for word2vec 

(OMG … calculus)
• Programming part: word2vec implementation in NumPy
• (Not an IPython notebook)
• You should start looking at it early! Today’s lecture will be 

helpful and Thursday will contain some more info. 
• Website has lecture notes to give more detail
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A note on your experience !

• This is a hard, advanced, graduate level class
• I and all the TAs really care about your success in this class
• Give Feedback. Work to address holes in your knowledge
• Come to office hours/help sessions

“Best class at Stanford”
“Changed my life”
“Obvious that instructors care”
“Learned a ton”
“Hard but worth it”

“Terrible class”
“Don’t take it”
“Instructors don’t care”
“Too much work”
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Office Hours / Help sessions

• Come to office hours/help sessions!
• Come to discuss final project ideas as well as the homeworks
• Try to come early, often and off-cycle

• Help sessions: daily, at various times, see calendar
• Coming up: Wed 12-2:30pm, Thu 6:30–9:00pm
• Gates Basement B21 (and B30) – bring your student ID
• No ID? Try Piazza or tailgating—hoping to get a phone in room

• Attending in person: Just show up! Our friendly course staff 
will be on hand to assist you

• SCPD/remote access: Use queuestatus
• Chris’s office hours:

• Mon 1–3pm. Come along next Monday?
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Lecture Plan

Lecture 3: Word Window Classification, Neural Nets, and Calculus
1. Course information update (5 mins)
2. Classification review/introduction (10 mins)
3. Neural networks introduction (15 mins)
4. Named Entity Recognition (5 mins)
5. Binary true vs. corrupted word window classification (15 mins)
6. Matrix calculus introduction (20 mins)

• This will be a tough week for some! à
• Read tutorial materials given in syllabus
• Visit office hours
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2. Classification setup and notation

• Generally we have a training dataset consisting of samples

{xi,yi}N
i=1

• xi are inputs, e.g. words (indices or vectors!), sentences, 
documents, etc.
• Dimension d

• yi are labels (one of C classes) we try to predict, for example:
• classes: sentiment, named entities, buy/sell decision
• other words
• later: multi-word sequences
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Classification intuition

• Training data: {xi,yi}N
i=1

• Simple illustration case: 
• Fixed 2D word vectors to classify
• Using softmax/logistic regression
• Linear decision boundary

• Traditional ML/Stats approach: assume xi are fixed, 
train (i.e., set) softmax/logistic regression weights ! ∈ ℝ$×&
to determine a decision boundary (hyperplane) as in the picture

• Method: For each x, predict:

Visualizations with ConvNetJS by Karpathy!
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Details of the softmax classifier

We can tease apart the prediction function into two steps:

1. Take the yth row of W and multiply that row with x:

Compute all fc for c = 1, …, C

2. Apply softmax function to get normalized probability:

= softmax(*+)
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Training with softmax and cross-entropy loss

• For each training example (x,y), our objective is to maximize the 
probability of the correct class y

• Or we can minimize the negative log probability of that class:
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Background: What is “cross entropy” loss/error?

• Concept of “cross entropy” is from information theory
• Let the true probability distribution be p
• Let our computed model probability be q
• The cross entropy is: 

• Assuming a ground truth (or true or gold or target) probability 
distribution that is 1 at the right class and 0 everywhere else:
p = [0,…,0,1,0,…0] then:

• Because of one-hot p, the only term left is the negative log 
probability of the true class
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Classification over a full dataset

• Cross entropy loss function over 
full dataset {xi,yi}N

i=1 

• Instead of

We will write f in matrix notation:
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Traditional ML optimization

• For general machine learning ! usually
only consists of columns of W:

• So we only update the decision 
boundary via Visualizations with ConvNetJS by Karpathy
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3. Neural Network Classifiers

• Softmax (≈ logistic regression) alone not very powerful

• Softmax gives only linear decision boundaries

This can be quite limiting

• à Unhelpful when a
problem is complex

• Wouldn’t it be cool to 
get these correct?
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Neural Nets for the Win!

• Neural networks can learn much more complex 
functions and nonlinear decision boundaries!

• In original space
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Classification difference with word vectors

• Commonly in NLP deep learning:
• We learn both W and word vectors x
• We learn both conventional parameters and representations
• The word vectors re-represent one-hot vectors—move them 

around in an intermediate layer vector space—for easy 
classification with a (linear) softmax classifier via layer x = Le

Very large number of 
parameters!
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Neural computation

17



An artificial neuron

• Neural networks come with their own terminological baggage
• But if you understand how softmax models work, then you can 

easily understand the operation of a neuron!
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Mathematical Model of a Neuron 
•  Neural%networks%deKine%functions%of%the%inputs%(hidden%features)%
•  ArtiKicial%neurons:%units%
•  Each%unit%activity%based%on%weighted%activity%of%preceding%units%



A neuron can be a binary logistic regression unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w, b are the parameters of this neuron
i.e., this logistic regression model

b: We can have an “always on” 
feature, which gives a class prior, 
or separate it out, as a bias term
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f = nonlinear activation fct. (e.g. sigmoid), w = weights, b = bias, h = hidden, x = inputs



A neural network 
= running several logistic regressions at the same time
If we feed a vector of inputs through a bunch of logistic regression 
functions, then we get a vector of outputs …

But we don’t have to decide 
ahead of time what variables 
these logistic regressions are 
trying to predict!
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A neural network 
= running several logistic regressions at the same time
… which we can feed into another logistic regression function

It is the loss function 
that will direct what 
the intermediate 
hidden variables should 
be, so as to do a good 
job at predicting the 
targets for the next 
layer, etc.
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A neural network 
= running several logistic regressions at the same time
Before we know it, we have a multilayer neural network….
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Matrix notation for a layer

We have 

In matrix notation

Activation f is applied element-wise:

a1

a2

a3

a1 = f (W11x1 +W12x2 +W13x3 + b1)
a2 = f (W21x1 +W22x2 +W23x3 + b2 )
etc.

z =Wx + b
a = f (z)

f ([z1, z2, z3]) = [ f (z1), f (z2 ), f (z3)]

W12

b3
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Non-linearities (aka “f ”): Why they’re needed

• Example: function approximation, 
e.g., regression or classification
• Without non-linearities, deep neural 

networks can’t do anything more than a 
linear transform

• Extra layers could just be compiled down 
into a single linear transform: W1 W2 x = Wx

• With more layers, they can approximate 
more complex functions!
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The European Commission said on Thursday it disagreed with 
German advice.

Only France and Britain backed Fischler 's proposal .

�What we have to be extremely careful of is how other 
countries are going to take Germany 's lead�, Welsh
National Farmers ' Union ( NFU ) chairman John Lloyd Jones
said on BBC radio .

The European Commission said on Thursday it disagreed with 
German advice.

Only France and Britain backed Fischler 's proposal .

�What we have to be extremely careful of is how other 
countries are going to take Germany 's lead�, Welsh 
National Farmers ' Union ( NFU ) chairman John Lloyd Jones 
said on BBC radio .

4. Named Entity Recognition (NER)
• The task: find and classify names in text, for example:

• Possible purposes:
• Tracking mentions of particular entities in documents
• For question answering, answers are usually named entities
• A lot of wanted information is really associations between named entities
• The same techniques can be extended to other slot-filling classifications

• Often followed by Named Entity Linking/Canonicalization into Knowledge Base

The European Commission [ORG] said on Thursday it 
disagreed with German [MISC] advice.

Only France [LOC] and Britain [LOC] backed Fischler [PER] 
's proposal .

�What we have to be extremely careful of is how other 
countries are going to take Germany 's lead�, Welsh
National Farmers ' Union [ORG] ( NFU [ORG] ) chairman John 
Lloyd Jones [PER] said on BBC [ORG] radio .
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Named Entity Recognition on word sequences

We predict entities by classifying words in context and then 
extracting entities as word subsequences

Foreign ORG B-ORG
Ministry ORG I-ORG
spokesman O O
Shen PER B-PER
Guofang PER I-PER
told O O
Reuters ORG B-ORG
that O O
: : ! BIO encoding

}

}

}



Why might NER be hard?

• Hard to work out boundaries of entity

Is the first entity “First National Bank” or “National Bank”
• Hard to know if something is an entity

Is there a school called “Future School” or is it a future school?
• Hard to know class of unknown/novel entity:

What class is “Zig Ziglar”?  (A person.)
• Entity class is ambiguous and depends on context

“Charles Schwab” is PER
not ORG here! !
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5. Binary word window classification

• In general, classifying single words is rarely done

• Interesting problems like ambiguity arise in context!

• Example: auto-antonyms:
• "To sanction" can mean "to permit" or "to punish”
• "To seed" can mean "to place seeds" or "to remove seeds"

• Example: resolving linking of ambiguous named entities:
• Paris à Paris, France vs. Paris Hilton vs. Paris, Texas
• Hathaway à Berkshire Hathaway vs. Anne Hathaway
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Window classification

• Idea: classify a word in its context window of neighboring 
words.

• For example, Named Entity Classification of a word in context:
• Person, Location, Organization, None

• A simple way to classify a word in context might be to average 
the word vectors in a window and to classify the average vector
• Problem: that would lose position information
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Window classification: Softmax

• Train softmax classifier to classify a center word by taking 
concatenation of word vectors surrounding it in a window

• Example: Classify “Paris” in the context of this sentence with 
window length 2: 

…     museums      in         Paris         are      amazing    … .

Xwindow = [  xmuseums xin xParis xare xamazing ]T

• Resulting vector xwindow = x ∈ R5d    , a column vector!
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Simplest window classifier: Softmax

• With x = xwindow we can use the same softmax classifier as before

• With cross entropy error as before: 

• How do you update the word vectors?
• Short answer: Just take derivatives like last week and optimize

same

predicted model 
output probability
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Binary classification with unnormalized scores

Method used by Collobert & Weston (2008, 2011)
• Just recently won ICML 2018 Test of time award

• For our previous example:
Xwindow = [  xmuseums xin xParis xare xamazing ]

• Assume we want to classify whether the center word is 
a Location

• Similar to word2vec, we will go over all positions in a 
corpus. But this time, it will be supervised and only 
some positions should get a high score.

• E.g., the positions that have an actual NER Location in 
their center are “true” positions and get a high score
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Binary classification for NER Location

• Example: Not all museums in Paris are amazing .
• Here: one true window, the one with Paris in its center 

and all other windows are “corrupt” in terms of not 
having a named entity location in their center.

museums in Paris are amazing
• “Corrupt“ windows are easy to find and there are 

many: Any window whose center word isn’t specifically 
labeled as NER location in our corpus

Not all museums in Paris
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Neural Network Feed-forward Computation

Use neural activation a simply to give an unnormalized score

We compute a window’s score with a 3-layer neural net: 
• s = score("museums in Paris are amazing”)

xwindow = [  xmuseums xin xParis xare xamazing ]34



Main intuition for extra layer

The middle layer learns non-linear interactions between 
the input word vectors.

Example: only if “museums” is first vector should it 
matter that “in” is in the second position

Xwindow = [  xmuseums xin xParis xare xamazing ]
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The max-margin loss

• Idea for training objective: Make true window’s score 

larger and corrupt window’s score lower (until they’re 

good enough)

• s = score(museums in Paris are amazing)

• sc = score(Not all museums in Paris)

• Minimize

• This is not differentiable but it is 

continuous → we can use SGD.

36

Each option 
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Max-margin loss

• Objective for a single window:

• Each window with an NER location at its center should 
have a score +1 higher than any window without a 
location at its center

• xxx  |ß 1    à|   ooo

• For full objective function: Sample several corrupt 
windows per true one. Sum over all training windows.

• Similar to negative sampling in word2vec
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Simple net for score

x  = [  xmuseums xin xParis xare xamazing ]
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Remember: Stochastic Gradient Descent

• Update equation:

• How do we compute ∇"#(%)?
• By hand (this lecture)
• Algorithmically: the backpropagation algorithm (next lecture)

' = step size or learning rate
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Computing Gradients by Hand

• Review of multivariable derivatives 

• Matrix calculus: Fully vectorized gradients
• Much faster and more useful than non-vectorized gradients

• But doing a non-vectorized gradient can be good practice; 
watch last week’s lecture for an example

• Lecture notes cover this material in more detail
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Gradients

• Given a function with 1 output and 1 input

! " = "$

• It’s gradient (slope) is its derivative 
%&
%' = 3")
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Gradients

• Given a function with 1 output and n inputs

• It’s gradient is a vector of partial derivatives with 
respect to each input 
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Jacobian Matrix: Generalization of the Gradient

• Given a function with m outputs and n inputs

• It’s Jacobian is an m x n matrix of partial derivatives 
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Chain Rule

• For one-variable functions: multiply derivatives

• For multiple variables at once: multiply Jacobians
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function

Function has n outputs and n inputs → n by n Jacobian
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Example Jacobian: Elementwise activation Function
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Example Jacobian: Elementwise activation Function

48



Example Jacobian: Elementwise activation Function
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
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Other Jacobians

• Compute these at home for practice!

• Check your answers with the lecture notes
52

Fine print: This is the correct Jacobian. 
Later we discuss the “shape convention”; 
using it the answer would be h.



Other Jacobians

• Compute these at home for practice!
• Check your answers with the lecture notes
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Back to our Neural Net!

x  = [  xmuseums xin xParis xare xamazing ]
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Back to our Neural Net!

x  = [  xmuseums xin xParis xare xamazing ]

• Let’s find
• In practice we care about the gradient of the loss, but 

we will compute the gradient of the score for simplicity
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1. Break up equations into simple pieces
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2. Apply the chain rule
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2. Apply the chain rule
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2. Apply the chain rule
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2. Apply the chain rule
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3. Write out the Jacobians

Useful Jacobians from previous slide
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3. Write out the Jacobians

Useful Jacobians from previous slide
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3. Write out the Jacobians

Useful Jacobians from previous slide
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3. Write out the Jacobians

Useful Jacobians from previous slide
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3. Write out the Jacobians

Useful Jacobians from previous slide
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Re-using Computation

• Suppose we now want to compute
• Using the chain rule again:
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Re-using Computation

• Suppose we now want to compute
• Using the chain rule again:

The same! Let’s avoid duplicated computation…
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Re-using Computation

• Suppose we now want to compute
• Using the chain rule again:

68 ! is local error signal
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Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?
• Inconvenient to do 
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Derivative with respect to Matrix: Output shape

• What does             look like?         

• 1 output, nm inputs: 1 by nm Jacobian?
• Inconvenient to do 

• Instead follow convention: shape of the gradient is 
shape of parameters

• So              is n by m: 
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Derivative with respect to Matrix

• Remember 
• is going to be in our answer

• The other term should be       because

• It turns out  

71
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Why the Transposes?

• Hacky answer: this makes the dimensions work out!
• Useful trick for checking your work!

• Full explanation in the lecture notes
• Each input goes to each output – you get outer product
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Why the Transposes?

73
x1 x2                 x3 +1

f(z1)=   h1 h2 =f(z2) 

W23



What shape should derivatives be?

• is a row vector 
• But convention says our gradient should be a column vector 

because      is a column vector…

• Disagreement between Jacobian form (which makes 
the chain rule easy) and the shape convention (which 
makes implementing SGD easy)
• We expect answers to follow the shape convention 

• But Jacobian form is useful for computing the answers
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What shape should derivatives be?
• Two options:

• 1. Use Jacobian form as much as possible, reshape to 
follow the convention at the end:
• What we just did. But at the end transpose       to make the 

derivative a column vector, resulting in

• 2. Always follow the convention
• Look at dimensions to figure out when to transpose and/or 

reorder terms. 
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Next time: Backpropagation

Backpropagation 

• Computing gradients algorithmically and efficiently

• Converting what we just did by hand into an algorithm

• Used by deep learning software frameworks 
(TensorFlow, PyTorch, Chainer, etc.)
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