
Natural Language Processing
with Deep Learning

CS224N/Ling284

Christopher Manning

Lecture 1: Introduction and Word Vectors

Lecture Plan

Lecture 1: Introduction and Word Vectors
1. The course (10 mins)
2. Human language and word meaning (15 mins)
3. Word2vec introduction (15 mins)
4. Word2vec objective function gradients (25 mins)
5. Optimization basics (5 mins)
6. Looking at word vectors (10 mins or less)

2

Course logistics in brief

• Instructor: Christopher Manning
• Head TA and co-instructor: Abigail See
• TAs: Many wonderful people! See website
• Time: TuTh 4:30–5:50, Nvidia Aud (à video)

• Other information: see the class webpage:
• http://cs224n.stanford.edu/

a.k.a., http://www.stanford.edu/class/cs224n/
• Syllabus, office hours, “handouts”, TAs, Piazza
• Office hours start this Thursday

• Slides uploaded before each lecture
3

http://cs224n.stanford.edu/
http://www.stanford.edu/class/cs224n/

What do we hope to teach?

1. An understanding of the effective modern methods for deep
learning
• Basics first, then key methods used in NLP: Recurrent

networks, attention, etc.
2. A big picture understanding of human languages and the

difficulties in understanding and producing them
3. An understanding of and ability to build systems (in PyTorch)

for some of the major problems in NLP:
• Word meaning, dependency parsing, machine translation,

question answering

4

What’s different this year?

• Lectures (including guest lectures) covering new material:
character models, transformers, safety/fairness, multitask learn.

• 5x one-week assignments instead of 3x two-week assignments
• Assignments covering new material (NMT with attention,

ConvNets, subword modeling)
• Using PyTorch rather than TensorFlow
• Assignments due before class (4:30pm) not at midnight!
• Gentler but earlier ramp-up

• First assignment is easy, but due one week from today!
• No midterm

5

Course work and grading policy

• 5 x 1-week Assignments: 6% + 4 x 12%: 54%
• HW1 is released today! Due next Tuesday! At 4:30 p.m.

• Please use @stanford.edu email for your Gradescope account

• Final Default or Custom Course Project (1–3 people): 43%
• Project proposal: 5%, milestone: 5%, poster: 3%, report: 30%

• Final poster session attendance expected! (See website.)

• Wed Mar 20, 5pm-10pm (put it in your calendar!)

• Participation: 3%
• (Guest) lecture attendance, Piazza, eval, karma – see website!

• Late day policy
• 6 free late days; afterwards, 10% off per day late

• Assignments not accepted after 3 late days per assignment

• Collaboration policy: Read the website and the Honor Code!
Understand allowed ‘collaboration’ and how to document it

6

High-Level Plan for Problem Sets

• HW1 is hopefully an easy on ramp – an IPython Notebook
• HW2 is pure Python (numpy) but expects you to do

(multivariate) calculus so you really understand the basics
• HW3 introduces PyTorch
• HW4 and HW5 use PyTorch on a GPU (Microsoft Azure)

• Libraries like PyTorch, Tensorflow (and Chainer, MXNet,
CNTK, Keras, etc.) are becoming the standard tools of DL

• For FP, you either
• Do the default project, which is SQuAD question answering
• Open-ended but an easier start; a good choice for most

• Propose a custom final project, which we approve
• You will receive feedback from a mentor (TA/prof/postdoc/PhD)

• Can work in teams of 1–3; can use any language
7

Lecture Plan

1. The course (10 mins)
2. Human language and word meaning (15 mins)
3. Word2vec introduction (15 mins)
4. Word2vec objective function gradients (25 mins)
5. Optimization basics (5 mins)
6. Looking at word vectors (10 mins or less)

8

https://xkcd.com/1576/ Randall Munroe CC BY NC 2.5

1. How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

• the idea that is represented by a word, phrase, etc.

• the idea that a person wants to express by using
words, signs, etc.

• the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotational semantics11

How do we have usable meaning in a computer?
Common solution: Use e.g. WordNet, a thesaurus containing lists
of synonym sets and hypernyms (“is a” relationships).

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

noun: good
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj (sat): full, good
adj: good
adj (sat): estimable, good, honorable, respectable
adj (sat): beneficial, good
adj (sat): good
adj (sat): good, just, upright
…
adverb: well, good
adverb: thoroughly, soundly, good

e.g. synonym sets containing “good”: e.g. hypernyms of “panda”:

12

from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):

print("{}: {}".format(poses[synset.pos()],
", ".join([l.name() for l in synset.lemmas()])))

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01")
hyper = lambda s: s.hypernyms()
list(panda.closure(hyper))

Problems with resources like WordNet

• Great as a resource but missing nuance

• e.g. “proficient” is listed as a synonym for “good”.
This is only correct in some contexts.

• Missing new meanings of words

• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

• Can’t compute accurate word similarity à
13

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel – a localist representation

Words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocabulary (e.g., 500,000)

Means one 1, the rest 0s

14

Problem with words as discrete symbols

Example: in web search, if user searches for “Seattle motel”, we
would like to match documents containing “Seattle hotel”.

But:
motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal.
There is no natural notion of similarity for one-hot vectors!

Solution:
• Could try to rely on WordNet’s list of synonyms to get similarity?

• But it is well-known to fail badly: incompleteness, etc.
• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2

15

Representing words by their context

• Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by
• “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window).

• Use the many contexts of w to build up a representation of w

…government debt problems turning into banking crises as happened in 2009…
…saying that Europe needs unified banking regulation to replace the hodgepodge…

…India has just given its banking system a shot in the arm…

These context words will represent banking16

Word vectors

We will build a dense vector for each word, chosen so that it is
similar to vectors of words that appear in similar contexts

Note: word vectors are sometimes called word embeddings or
word representations. They are a distributed representation.

banking =

0.286
0.792

−0.177
−0.107

0.109
−0.542

0.349
0.271

17

Word meaning as a neural word vector – visualization

0.286
0.792
−0.177
−0.107
0.109
−0.542
0.349
0.271
0.487

expect =

18

3. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning
word vectors

Idea:
• We have a large corpus of text
• Every word in a fixed vocabulary is represented by a vector
• Go through each position t in the text, which has a center word

c and context (“outside”) words o
• Use the similarity of the word vectors for c and o to calculate

the probability of o given c (or vice versa)
• Keep adjusting the word vectors to maximize this probability

19

Word2Vec Overview

• Example	windows	and	process	for	computing 5 6789 | 67

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

5 678; | 67

5 678< | 67
5 67=; | 67

5 67=< | 67

20

Word2Vec Overview

• Example	windows	and	process	for	computing 5 6789 | 67

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

5 678; | 67

5 678< | 67
5 67=; | 67

5 67=< | 67

21

Word2vec: objective function
For each position ! = 1,… , &, predict context words within a
window of fixed size m, given center word '(.

) * =+
,-.

/
+

012(21
(34

5 ',6(| ',; *

The objective function 9 * is the (average) negative log likelihood:

9 * = −1& log)(*) = −1&@,-.

/
@

012(21
(34

log5 ',6(| ',; *

Minimizing objective function ⟺Maximizing predictive accuracy

Likelihood =

* is all variables
to be optimized

sometimes called cost or loss function

22

Word2vec: objective function

• We want to minimize the objective function:

! " = −
1
&
'
()*

+

'
,-./.-

/01

log 5 6(7/ | 6(; "

• Question: How to calculate 5 6(7/ | 6(; " ?

• Answer: We will use two vectors per word w:
• :; when w is a center word

• <; when w is a context word

• Then for a center word c and a context word o:

5 = > =
exp(<C+:D)

∑;∈H exp(<;+ :D)23

Word2Vec Overview with Vectors

• Example	windows	and	process	for	computing 5 6789 | 67

• 5 ;<=>?@ABC | DEF7> short for P HIJKLMNO | PQRJ ; ;<=>?@ABC, DEF7>, U

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

5 ;?VFWEFX |DEF7>

5 ;Y=ECEC |DEF7>

5 ;7ZFEFX | DEF7>

5 ;<=>?@ABC | DEF7>

24

Word2vec: prediction function

! " # = exp()*+,-)
∑0∈2 exp()0+ ,-)

• This is an example of the softmax function ℝ4 → ℝ4

softmax <= = exp(<=)
∑>?@4 exp(<>)

= A=
• The softmax function maps arbitrary values <= to a probability

distribution A=
• “max” because amplifies probability of largest <=
• “soft” because still assigns some probability to smaller <=
• Frequently used in Deep Learning

Dot product compares similarity of o and c.
)+, =). , = ∑=?@4)=,=

Larger dot product = larger probability

Normalize over entire vocabulary
to give probability distribution

25

Exponentiation makes anything positive

Training a model by optimizing parameters

To train a model, we adjust parameters to minimize a loss
E.g., below, for a simple convex function over two parameters
Contour lines show levels of objective function

26

To train the model: Compute all vector gradients!

• Recall: ! represents all model parameters, in one long vector
• In our case with d-dimensional vectors and V-many words:

• Remember: every word has two vectors
• We optimize these parameters by walking down the gradient
27

4. Word2vec derivations of gradient

• Whiteboard – see video if you’re not in class ;)

• The basic Lego piece

• Useful basics:

• If in doubt: write out with indices

• Chain rule! If y = f(u) and u = g(x), i.e. y = f(g(x)), then:

28

Chain Rule

• Chain rule! If y = f(u) and u = g(x), i.e. y = f(g(x)), then:

• Simple example:

29

!"
!# = 20(#(+ 7)(. 3#.

Interactive Whiteboard Session!

Let’s derive gradient for center word together
For one example window and one example outside word:

You then also need the gradient for context words (it’s similar;
left for homework). That’s all of the parameters ! here.

30

log % & ' = log exp(-./01)
∑4567 exp(-4/01)

Calculating all gradients!

• We went through gradient for each center vector v in a window
• We also need gradients for outside vectors u

• Derive at home!
• Generally in each window we will compute updates for all

parameters that are being used in that window. For example:

…crisesbankingintoturningproblems… as

center word
at position t

outside context words
in window of size 2

outside context words
in window of size 2

! "#$%&'& |)*+,-%,.

! "+& |)*+,-%,.
! "%,/0 |)*+,-%,.

! "/1$,%,. |)*+,-%,.

31

Word2vec: More details

Why two vectors? à Easier optimization. Average both at the end.

Two model variants:
1. Skip-grams (SG)

Predict context (”outside”) words (position independent) given center
word

2. Continuous Bag of Words (CBOW)
Predict center word from (bag of) context words

This lecture so far: Skip-gram model

Additional efficiency in training:
1. Negative sampling

So far: Focus on naïve softmax (simpler training method)
32

5. Optimization: Gradient Descent

• We have a cost function ! " we want to minimize
• Gradient Descent is an algorithm to minimize ! "
• Idea: for current value of ", calculate gradient of ! " , then take

small step in direction of negative gradient. Repeat.

Note: Our
objectives
may not
be convex
like this :(

33

• Update equation (in matrix notation):

• Update equation (for single parameter):

• Algorithm:

Gradient Descent

! = step size or learning rate

34

Stochastic Gradient Descent

• Problem: ! " is a function of all windows in the corpus
(potentially billions!)
• So is very expensive to compute

• You would wait a very long time before making a single update!

• Very bad idea for pretty much all neural nets!
• Solution: Stochastic gradient descent (SGD)
• Repeatedly sample windows, and update after each one

• Algorithm:

35

Lecture Plan

1. The course (10 mins)
2. Human language and word meaning (15 mins)
3. Word2vec introduction (15 mins)
4. Word2vec objective function gradients (25 mins)
5. Optimization basics (5 mins)
6. Looking at word vectors (10 mins or less)

36

