# 使用`nn.Transformer`和`torchtext`的序列到序列建模 > 原文: 这是一个有关如何训练使用[`nn.Transformer`](https://pytorch.org/docs/master/nn.html?highlight=nn%20transformer#torch.nn.Transformer)模块的序列到序列模型的教程。 PyTorch 1.2 版本包括一个基于[论文](https://arxiv.org/pdf/1706.03762.pdf)的标准转换器模块。 事实证明,该转换器模型在许多序列间问题上具有较高的质量,同时具有更高的可并行性。 `nn.Transformer`模块完全依赖于注意力机制(另一个最近实现为[`nn.MultiheadAttention`](https://pytorch.org/docs/master/nn.html?highlight=multiheadattention#torch.nn.MultiheadAttention)的模块)来绘制输入和输出之间的全局依存关系。 `nn.Transformer`模块现已高度模块化,因此可以轻松地修改/组成单个组件(如本教程中的[`nn.TransformerEncoder`](https://pytorch.org/docs/master/nn.html?highlight=nn%20transformerencoder#torch.nn.TransformerEncoder))。 ![../_img/transformer_architecture.jpg](img/4b79dddf1ff54b9384754144d8246d9b.png) ## 定义模型 在本教程中,我们将在语言建模任务上训练`nn.TransformerEncoder`模型。 语言建模任务是为给定单词(或单词序列)遵循单词序列的可能性分配概率。 标记序列首先传递到嵌入层,然后传递到位置编码层以说明单词的顺序(有关更多详细信息,请参见下一段)。 `nn.TransformerEncoder`由多层[`nn.TransformerEncoderLayer`](https://pytorch.org/docs/master/nn.html?highlight=transformerencoderlayer#torch.nn.TransformerEncoderLayer)组成。 与输入序列一起,还需要一个正方形的注意掩码,因为`nn.TransformerEncoder`中的自注意层仅允许出现在该序列中的较早位置。 对于语言建模任务,应屏蔽将来头寸上的所有标记。 为了获得实际的单词,将`nn.TransformerEncoder`模型的输出发送到最终的`Linear`层,然后是对数 Softmax 函数。 ```py import math import torch import torch.nn as nn import torch.nn.functional as F class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() from torch.nn import TransformerEncoder, TransformerEncoderLayer self.model_type = 'Transformer' self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, src_mask): src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_mask) output = self.decoder(output) return output ``` `PositionalEncoding`模块注入一些有关标记在序列中的相对或绝对位置的信息。 位置编码的尺寸与嵌入的尺寸相同,因此可以将两者相加。 在这里,我们使用不同频率的`sine`和`cosine`函数。 ```py class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) ``` ## 加载和批量数据 本教程使用`torchtext`生成 Wikitext-2 数据集。 `vocab`对象是基于训练数据集构建的,用于将标记数字化为张量。 从序列数据开始,`batchify()`函数将数据集排列为列,以修剪掉数据分成大小为`batch_size`的批量后剩余的所有标记。 例如,以字母为序列(总长度为 26)并且批大小为 4,我们将字母分为 4 个长度为 6 的序列: ![](img/tex27-1.gif) 这些列被模型视为独立的,这意味着无法了解`G`和`F`的依赖性,但可以进行更有效的批量。 ```py import io import torch from torchtext.utils import download_from_url, extract_archive from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip' test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url)) tokenizer = get_tokenizer('basic_english') vocab = build_vocab_from_iterator(map(tokenizer, iter(io.open(train_filepath, encoding="utf8")))) def data_process(raw_text_iter): data = [torch.tensor([vocab[token] for token in tokenizer(item)], dtype=torch.long) for item in raw_text_iter] return torch.cat(tuple(filter(lambda t: t.numel() > 0, data))) train_data = data_process(iter(io.open(train_filepath, encoding="utf8"))) val_data = data_process(iter(io.open(valid_filepath, encoding="utf8"))) test_data = data_process(iter(io.open(test_filepath, encoding="utf8"))) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def batchify(data, bsz): # Divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) batch_size = 20 eval_batch_size = 10 train_data = batchify(train_data, batch_size) val_data = batchify(val_data, eval_batch_size) test_data = batchify(test_data, eval_batch_size) ``` ### 生成输入序列和目标序列的函数 `get_batch()`函数为转换器模型生成输入和目标序列。 它将源数据细分为长度为`bptt`的块。 对于语言建模任务,模型需要以下单词作为`Target`。 例如,如果`bptt`值为 2,则`i = 0`时,我们将获得以下两个变量: ![../_img/transformer_input_target.png](img/20ef8681366b44461cf49d1ab98ab8f2.png) 应该注意的是,这些块沿着维度 0,与`Transformer`模型中的`S`维度一致。 批量尺寸`N`沿尺寸 1。 ```py bptt = 35 def get_batch(source, i): seq_len = min(bptt, len(source) - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len].reshape(-1) return data, target ``` ## 启动实例 使用下面的超参数建立模型。 `vocab`的大小等于`vocab`对象的长度。 ```py ntokens = len(vocab.stoi) # the size of vocabulary emsize = 200 # embedding dimension nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder nhead = 2 # the number of heads in the multiheadattention models dropout = 0.2 # the dropout value model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device) ``` ## 运行模型 [`CrossEntropyLoss`](https://pytorch.org/docs/master/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss)用于跟踪损失,[`SGD`](https://pytorch.org/docs/master/optim.html?highlight=sgd#torch.optim.SGD)实现随机梯度下降方法作为优化器。 初始学习率设置为 5.0。 [`StepLR`](https://pytorch.org/docs/master/optim.html?highlight=steplr#torch.optim.lr_scheduler.StepLR)用于通过历时调整学习率。 在训练期间,我们使用[`nn.utils.clip_grad_norm_`](https://pytorch.org/docs/master/nn.html?highlight=nn%20utils%20clip_grad_norm#torch.nn.utils.clip_grad_norm_)函数将所有梯度缩放在一起,以防止爆炸。 ```py criterion = nn.CrossEntropyLoss() lr = 5.0 # learning rate optimizer = torch.optim.SGD(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) import time def train(): model.train() # Turn on the train mode total_loss = 0. start_time = time.time() src_mask = model.generate_square_subsequent_mask(bptt).to(device) for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)): data, targets = get_batch(train_data, i) optimizer.zero_grad() if data.size(0) != bptt: src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device) output = model(data, src_mask) loss = criterion(output.view(-1, ntokens), targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() total_loss += loss.item() log_interval = 200 if batch % log_interval == 0 and batch > 0: cur_loss = total_loss / log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | ' 'lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, len(train_data) // bptt, scheduler.get_lr()[0], elapsed * 1000 / log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() def evaluate(eval_model, data_source): eval_model.eval() # Turn on the evaluation mode total_loss = 0. src_mask = model.generate_square_subsequent_mask(bptt).to(device) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, bptt): data, targets = get_batch(data_source, i) if data.size(0) != bptt: src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device) output = eval_model(data, src_mask) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(data_source) - 1) ``` 循环遍历。 如果验证损失是迄今为止迄今为止最好的,请保存模型。 在每个周期之后调整学习率。 ```py best_val_loss = float("inf") epochs = 3 # The number of epochs best_model = None for epoch in range(1, epochs + 1): epoch_start_time = time.time() train() val_loss = evaluate(model, val_data) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) print('-' * 89) if val_loss < best_val_loss: best_val_loss = val_loss best_model = model scheduler.step() ``` 出: ```py | epoch 1 | 200/ 2928 batches | lr 5.00 | ms/batch 30.78 | loss 8.03 | ppl 3085.47 | epoch 1 | 400/ 2928 batches | lr 5.00 | ms/batch 29.85 | loss 6.83 | ppl 929.53 | epoch 1 | 600/ 2928 batches | lr 5.00 | ms/batch 29.92 | loss 6.41 | ppl 610.71 | epoch 1 | 800/ 2928 batches | lr 5.00 | ms/batch 29.88 | loss 6.29 | ppl 539.54 | epoch 1 | 1000/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.17 | ppl 479.92 | epoch 1 | 1200/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.15 | ppl 468.35 | epoch 1 | 1400/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.11 | ppl 450.25 | epoch 1 | 1600/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 6.10 | ppl 445.77 | epoch 1 | 1800/ 2928 batches | lr 5.00 | ms/batch 29.97 | loss 6.02 | ppl 409.90 | epoch 1 | 2000/ 2928 batches | lr 5.00 | ms/batch 29.92 | loss 6.01 | ppl 408.66 | epoch 1 | 2200/ 2928 batches | lr 5.00 | ms/batch 29.94 | loss 5.90 | ppl 363.89 | epoch 1 | 2400/ 2928 batches | lr 5.00 | ms/batch 29.94 | loss 5.96 | ppl 388.68 | epoch 1 | 2600/ 2928 batches | lr 5.00 | ms/batch 29.94 | loss 5.95 | ppl 382.60 | epoch 1 | 2800/ 2928 batches | lr 5.00 | ms/batch 29.95 | loss 5.88 | ppl 358.87 ----------------------------------------------------------------------------------------- | end of epoch 1 | time: 91.45s | valid loss 5.85 | valid ppl 348.17 ----------------------------------------------------------------------------------------- | epoch 2 | 200/ 2928 batches | lr 4.51 | ms/batch 30.09 | loss 5.86 | ppl 351.70 | epoch 2 | 400/ 2928 batches | lr 4.51 | ms/batch 29.97 | loss 5.85 | ppl 347.85 | epoch 2 | 600/ 2928 batches | lr 4.51 | ms/batch 29.98 | loss 5.67 | ppl 288.80 | epoch 2 | 800/ 2928 batches | lr 4.51 | ms/batch 29.92 | loss 5.70 | ppl 299.81 | epoch 2 | 1000/ 2928 batches | lr 4.51 | ms/batch 29.95 | loss 5.65 | ppl 285.57 | epoch 2 | 1200/ 2928 batches | lr 4.51 | ms/batch 29.99 | loss 5.68 | ppl 293.48 | epoch 2 | 1400/ 2928 batches | lr 4.51 | ms/batch 29.96 | loss 5.69 | ppl 296.90 | epoch 2 | 1600/ 2928 batches | lr 4.51 | ms/batch 29.96 | loss 5.72 | ppl 303.83 | epoch 2 | 1800/ 2928 batches | lr 4.51 | ms/batch 29.93 | loss 5.66 | ppl 285.90 | epoch 2 | 2000/ 2928 batches | lr 4.51 | ms/batch 29.93 | loss 5.67 | ppl 289.58 | epoch 2 | 2200/ 2928 batches | lr 4.51 | ms/batch 29.97 | loss 5.55 | ppl 257.20 | epoch 2 | 2400/ 2928 batches | lr 4.51 | ms/batch 29.96 | loss 5.65 | ppl 283.92 | epoch 2 | 2600/ 2928 batches | lr 4.51 | ms/batch 29.95 | loss 5.65 | ppl 283.76 | epoch 2 | 2800/ 2928 batches | lr 4.51 | ms/batch 29.95 | loss 5.60 | ppl 269.90 ----------------------------------------------------------------------------------------- | end of epoch 2 | time: 91.37s | valid loss 5.60 | valid ppl 270.66 ----------------------------------------------------------------------------------------- | epoch 3 | 200/ 2928 batches | lr 4.29 | ms/batch 30.12 | loss 5.60 | ppl 269.95 | epoch 3 | 400/ 2928 batches | lr 4.29 | ms/batch 29.92 | loss 5.62 | ppl 274.84 | epoch 3 | 600/ 2928 batches | lr 4.29 | ms/batch 29.96 | loss 5.41 | ppl 222.98 | epoch 3 | 800/ 2928 batches | lr 4.29 | ms/batch 29.93 | loss 5.48 | ppl 240.15 | epoch 3 | 1000/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.43 | ppl 229.16 | epoch 3 | 1200/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.48 | ppl 239.42 | epoch 3 | 1400/ 2928 batches | lr 4.29 | ms/batch 29.95 | loss 5.49 | ppl 242.87 | epoch 3 | 1600/ 2928 batches | lr 4.29 | ms/batch 29.93 | loss 5.52 | ppl 250.16 | epoch 3 | 1800/ 2928 batches | lr 4.29 | ms/batch 29.93 | loss 5.47 | ppl 237.70 | epoch 3 | 2000/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.49 | ppl 241.36 | epoch 3 | 2200/ 2928 batches | lr 4.29 | ms/batch 29.92 | loss 5.36 | ppl 211.91 | epoch 3 | 2400/ 2928 batches | lr 4.29 | ms/batch 29.95 | loss 5.47 | ppl 237.16 | epoch 3 | 2600/ 2928 batches | lr 4.29 | ms/batch 29.94 | loss 5.47 | ppl 236.47 | epoch 3 | 2800/ 2928 batches | lr 4.29 | ms/batch 29.92 | loss 5.41 | ppl 223.08 ----------------------------------------------------------------------------------------- | end of epoch 3 | time: 91.32s | valid loss 5.61 | valid ppl 272.10 ----------------------------------------------------------------------------------------- ``` ## 使用测试数据集评估模型 应用最佳模型以检查测试数据集的结果。 ```py test_loss = evaluate(best_model, test_data) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89) ``` 出: ```py ========================================================================================= | End of training | test loss 5.52 | test ppl 249.05 ========================================================================================= ``` **脚本的总运行时间**:(4 分钟 50.218 秒) [下载 Python 源码:`transformer_tutorial.py`](../_downloads/f53285338820248a7c04a947c5110f7b/transformer_tutorial.py) [下载 Jupyter 笔记本:`transformer_tutorial.ipynb`](../_downloads/dca13261bbb4e9809d1a3aa521d22dd7/transformer_tutorial.ipynb) [由 Sphinx 画廊](https://sphinx-gallery.readthedocs.io)生成的画廊