# 计算机视觉的迁移学习教程 > 原文: **作者**: [Sasank Chilamkurthy](https://chsasank.github.io) 在本教程中,您将学习如何使用迁移学习训练卷积神经网络进行图像分类。 您可以在 [cs231n 笔记](https://cs231n.github.io/transfer-learning/)中阅读有关转学的更多信息。 引用这些注解, > 实际上,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对很少。 相反,通常在非常大的数据集上对 ConvNet 进行预训练(例如 ImageNet,其中包含 120 万个具有 1000 个类别的图像),然后将 ConvNet 用作初始化或固定特征提取器以完成感兴趣的任务。 这两个主要的迁移学习方案如下所示: * **卷积网络的微调**:代替随机初始化,我们使用经过预训练的网络初始化网络,例如在 imagenet 1000 数据集上进行训练的网络。 其余的训练照常进行。 * **作为固定特征提取器的 ConvNet**:在这里,我们将冻结除最终全连接层之外的所有网络的权重。 最后一个全连接层将替换为具有随机权重的新层,并且仅训练该层。 ```py # License: BSD # Author: Sasank Chilamkurthy from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import numpy as np import torchvision from torchvision import datasets, models, transforms import matplotlib.pyplot as plt import time import os import copy plt.ion() # interactive mode ``` ## 加载数据 我们将使用`torchvision`和`torch.utils.data`包来加载数据。 我们今天要解决的问题是训练一个模型来对**蚂蚁**和**蜜蜂**进行分类。 我们为蚂蚁和蜜蜂提供了大约 120 张训练图像。 每个类别有 75 个验证图像。 通常,如果从头开始训练的话,这是一个非常小的数据集。 由于我们正在使用迁移学习,因此我们应该能够很好地概括。 该数据集是 imagenet 的很小一部分。 注意 从的下载数据,并将其提取到当前目录。 ```py # Data augmentation and normalization for training # Just normalization for validation data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'data/hymenoptera_data' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") ``` ### 可视化一些图像 让我们可视化一些训练图像,以了解数据扩充。 ```py def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data inputs, classes = next(iter(dataloaders['train'])) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[class_names[x] for x in classes]) ``` ![../_img/sphx_glr_transfer_learning_tutorial_001.png](img/be538c850b645a41a7a77ff388954e14.png) ## 训练模型 现在,让我们编写一个通用函数来训练模型。 在这里,我们将说明: * 安排学习率 * 保存最佳模型 以下,参数`scheduler`是来自`torch.optim.lr_scheduler`的 LR 调度器对象。 ```py def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: if phase == 'train': model.train() # Set model to training mode else: model.eval() # Set model to evaluate mode running_loss = 0.0 running_corrects = 0 # Iterate over data. for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model ``` ### 可视化模型预测 通用函数,显示一些图像的预测 ```py def visualize_model(model, num_images=6): was_training = model.training model.eval() images_so_far = 0 fig = plt.figure() with torch.no_grad(): for i, (inputs, labels) in enumerate(dataloaders['val']): inputs = inputs.to(device) labels = labels.to(device) outputs = model(inputs) _, preds = torch.max(outputs, 1) for j in range(inputs.size()[0]): images_so_far += 1 ax = plt.subplot(num_images//2, 2, images_so_far) ax.axis('off') ax.set_title(f'predicted: {class_names[preds[j]]}') imshow(inputs.cpu().data[j]) if images_so_far == num_images: model.train(mode=was_training) return model.train(mode=was_training) ``` ## 微调 ConvNet 加载预训练的模型并重置最终的全连接层。 ```py model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features # Here the size of each output sample is set to 2. # Alternatively, it can be generalized to nn.Linear(num_ftrs, len(class_names)). model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) ``` ### 训练和评估 在 CPU 上大约需要 15-25 分钟。 但是在 GPU 上,此过程不到一分钟。 ```py model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25) ``` 出: ```py Epoch 0/24 ---------- train Loss: 0.6303 Acc: 0.6926 val Loss: 0.1492 Acc: 0.9346 Epoch 1/24 ---------- train Loss: 0.5511 Acc: 0.7869 val Loss: 0.2577 Acc: 0.8889 Epoch 2/24 ---------- train Loss: 0.4885 Acc: 0.8115 val Loss: 0.3390 Acc: 0.8758 Epoch 3/24 ---------- train Loss: 0.5158 Acc: 0.7992 val Loss: 0.5070 Acc: 0.8366 Epoch 4/24 ---------- train Loss: 0.5878 Acc: 0.7992 val Loss: 0.2706 Acc: 0.8758 Epoch 5/24 ---------- train Loss: 0.4396 Acc: 0.8279 val Loss: 0.2870 Acc: 0.8954 Epoch 6/24 ---------- train Loss: 0.4612 Acc: 0.8238 val Loss: 0.2809 Acc: 0.9150 Epoch 7/24 ---------- train Loss: 0.4387 Acc: 0.8402 val Loss: 0.1853 Acc: 0.9281 Epoch 8/24 ---------- train Loss: 0.2998 Acc: 0.8648 val Loss: 0.1926 Acc: 0.9085 Epoch 9/24 ---------- train Loss: 0.3383 Acc: 0.9016 val Loss: 0.1762 Acc: 0.9281 Epoch 10/24 ---------- train Loss: 0.2969 Acc: 0.8730 val Loss: 0.1872 Acc: 0.8954 Epoch 11/24 ---------- train Loss: 0.3117 Acc: 0.8811 val Loss: 0.1807 Acc: 0.9150 Epoch 12/24 ---------- train Loss: 0.3005 Acc: 0.8770 val Loss: 0.1930 Acc: 0.9085 Epoch 13/24 ---------- train Loss: 0.3129 Acc: 0.8689 val Loss: 0.2184 Acc: 0.9150 Epoch 14/24 ---------- train Loss: 0.3776 Acc: 0.8607 val Loss: 0.1869 Acc: 0.9216 Epoch 15/24 ---------- train Loss: 0.2245 Acc: 0.9016 val Loss: 0.1742 Acc: 0.9346 Epoch 16/24 ---------- train Loss: 0.3105 Acc: 0.8607 val Loss: 0.2056 Acc: 0.9216 Epoch 17/24 ---------- train Loss: 0.2729 Acc: 0.8893 val Loss: 0.1722 Acc: 0.9085 Epoch 18/24 ---------- train Loss: 0.3210 Acc: 0.8730 val Loss: 0.1977 Acc: 0.9281 Epoch 19/24 ---------- train Loss: 0.3231 Acc: 0.8566 val Loss: 0.1811 Acc: 0.9216 Epoch 20/24 ---------- train Loss: 0.3206 Acc: 0.8648 val Loss: 0.2033 Acc: 0.9150 Epoch 21/24 ---------- train Loss: 0.2917 Acc: 0.8648 val Loss: 0.1694 Acc: 0.9150 Epoch 22/24 ---------- train Loss: 0.2412 Acc: 0.8852 val Loss: 0.1757 Acc: 0.9216 Epoch 23/24 ---------- train Loss: 0.2508 Acc: 0.8975 val Loss: 0.1662 Acc: 0.9281 Epoch 24/24 ---------- train Loss: 0.3283 Acc: 0.8566 val Loss: 0.1761 Acc: 0.9281 Training complete in 1m 10s Best val Acc: 0.934641 ``` ```py visualize_model(model_ft) ``` ![../_img/sphx_glr_transfer_learning_tutorial_002.png](img/ebec7787362bc53fe2289e5740da5756.png) ## 作为固定特征提取器的 ConvNet 在这里,我们需要冻结除最后一层之外的所有网络。 我们需要设置`requires_grad == False`冻结参数,以便不在`backward()`中计算梯度。 [您可以在文档中阅读有关此内容的更多信息](https://pytorch.org/docs/notes/autograd.html#excluding-subgraphs-from-backward)。 ```py model_conv = torchvision.models.resnet18(pretrained=True) for param in model_conv.parameters(): param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default num_ftrs = model_conv.fc.in_features model_conv.fc = nn.Linear(num_ftrs, 2) model_conv = model_conv.to(device) criterion = nn.CrossEntropyLoss() # Observe that only parameters of final layer are being optimized as # opposed to before. optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9) # Decay LR by a factor of 0.1 every 7 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1) ``` ### 训练和评估 与以前的方案相比,在 CPU 上将花费大约一半的时间。 这是可以预期的,因为不需要为大多数网络计算梯度。 但是,确实需要计算正向。 ```py model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=25) ``` 出: ```py Epoch 0/24 ---------- train Loss: 0.7258 Acc: 0.6148 val Loss: 0.2690 Acc: 0.9020 Epoch 1/24 ---------- train Loss: 0.5342 Acc: 0.7500 val Loss: 0.1905 Acc: 0.9412 Epoch 2/24 ---------- train Loss: 0.4262 Acc: 0.8320 val Loss: 0.1903 Acc: 0.9412 Epoch 3/24 ---------- train Loss: 0.4103 Acc: 0.8197 val Loss: 0.2658 Acc: 0.8954 Epoch 4/24 ---------- train Loss: 0.3938 Acc: 0.8115 val Loss: 0.2871 Acc: 0.8954 Epoch 5/24 ---------- train Loss: 0.4623 Acc: 0.8361 val Loss: 0.1651 Acc: 0.9346 Epoch 6/24 ---------- train Loss: 0.5348 Acc: 0.7869 val Loss: 0.1944 Acc: 0.9477 Epoch 7/24 ---------- train Loss: 0.3827 Acc: 0.8402 val Loss: 0.1846 Acc: 0.9412 Epoch 8/24 ---------- train Loss: 0.3655 Acc: 0.8443 val Loss: 0.1873 Acc: 0.9412 Epoch 9/24 ---------- train Loss: 0.3275 Acc: 0.8525 val Loss: 0.2091 Acc: 0.9412 Epoch 10/24 ---------- train Loss: 0.3375 Acc: 0.8320 val Loss: 0.1798 Acc: 0.9412 Epoch 11/24 ---------- train Loss: 0.3077 Acc: 0.8648 val Loss: 0.1942 Acc: 0.9346 Epoch 12/24 ---------- train Loss: 0.4336 Acc: 0.7787 val Loss: 0.1934 Acc: 0.9346 Epoch 13/24 ---------- train Loss: 0.3149 Acc: 0.8566 val Loss: 0.2062 Acc: 0.9281 Epoch 14/24 ---------- train Loss: 0.3617 Acc: 0.8320 val Loss: 0.1761 Acc: 0.9412 Epoch 15/24 ---------- train Loss: 0.3066 Acc: 0.8361 val Loss: 0.1799 Acc: 0.9281 Epoch 16/24 ---------- train Loss: 0.3952 Acc: 0.8443 val Loss: 0.1666 Acc: 0.9346 Epoch 17/24 ---------- train Loss: 0.3552 Acc: 0.8443 val Loss: 0.1928 Acc: 0.9412 Epoch 18/24 ---------- train Loss: 0.3106 Acc: 0.8648 val Loss: 0.1964 Acc: 0.9346 Epoch 19/24 ---------- train Loss: 0.3675 Acc: 0.8566 val Loss: 0.1813 Acc: 0.9346 Epoch 20/24 ---------- train Loss: 0.3565 Acc: 0.8320 val Loss: 0.1758 Acc: 0.9346 Epoch 21/24 ---------- train Loss: 0.2922 Acc: 0.8566 val Loss: 0.2295 Acc: 0.9216 Epoch 22/24 ---------- train Loss: 0.3283 Acc: 0.8402 val Loss: 0.2267 Acc: 0.9281 Epoch 23/24 ---------- train Loss: 0.2875 Acc: 0.8770 val Loss: 0.1878 Acc: 0.9346 Epoch 24/24 ---------- train Loss: 0.3172 Acc: 0.8689 val Loss: 0.1849 Acc: 0.9412 Training complete in 0m 34s Best val Acc: 0.947712 ``` ```py visualize_model(model_conv) plt.ioff() plt.show() ``` ![../_img/sphx_glr_transfer_learning_tutorial_003.png](img/54625e60404f9c98f34cf32ca56bb118.png) ## 进一步学习 如果您想了解有关迁移学习的更多信息,请查看我们的[计算机视觉教程的量化迁移学习](https://pytorch.org/tutorials/intermediate/quantized_transfer_learning_tutorial.html)。 **脚本的总运行时间**:(1 分钟 56.157 秒) [下载 Python 源码:`transfer_learning_tutorial.py`](../_downloads/07d5af1ef41e43c07f848afaf5a1c3cc/transfer_learning_tutorial.py) [下载 Jupyter 笔记本:`transfer_learning_tutorial.ipynb`](../_downloads/62840b1eece760d5e42593187847261f/transfer_learning_tutorial.ipynb) [由 Sphinx 画廊](https://sphinx-gallery.readthedocs.io)生成的画廊