
Question

Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 4.

Credits:
Special thanks to @Freezen (https://oj.leetcode.com/discuss/user/Freezen) for adding this problem and creating all test cases.

Quick Navigation
Summary
Solution

Approach #1 Brute Force [Accepted]
Approach #2 (Dynamic Programming) [Accepted]
Approach #3 (Better Dynamic Programming) [Accepted]

Summary

We need to find the largest square comprising of all ones in the given m × n matrix. In other words we need to find the largest set of connected ones in the
given matrix that forms a square.

Solution

Approach #1 Brute Force [Accepted]

The simplest approach consists of trying to find out every possible square of 1’s that can be formed from within the matrix. The question now is – how to go
for it?

We use a variable to contain the size of the largest square found so far and another variable to store the size of the current, both initialized to 0. Starting from
the left uppermost point in the matrix, we search for a 1. No operation needs to be done for a 0. Whenever a 1 is found, we try to find out the largest square
that can be formed including that 1. For this, we move diagonally (right and downwards), i.e. we increment the row index and column index temporarily and
then check whether all the elements of that row and column are 1 or not. If all the elements happen to be 1, we move diagonally further as previously. If even
one element turns out to be 0, we stop this diagonal movement and update the size of the largest square. Now we, continue the traversal of the matrix from
the element next to the initial 1 found, till all the elements of the matrix have been traversed.

Java

221. Maximal Square
July 14, 2016 dynamic-programming (/articles/?tag=dynamic-programming)

Question Editorial Solution

https://oj.leetcode.com/discuss/user/Freezen
https://leetcode.com/articles/maximal-square/#summary
https://leetcode.com/articles/maximal-square/#solution
https://leetcode.com/articles/maximal-square/#approach-1-brute-force-accepted
https://leetcode.com/articles/maximal-square/#approach-2-dynamic-programming-accepted
https://leetcode.com/articles/maximal-square/#approach-3-better-dynamic-programming-accepted
https://leetcode.com/articles/?tag=dynamic-programming

public class Solution {
 public int maximalSquare(char[][] matrix) {
 int rows = matrix.length, cols = rows > 0 ? matrix[0].length : 0;
 int maxsqlen = 0;
 for (int i = 0; i < rows; i++) {
 for (int j = 0; j < cols; j++) {
 if (matrix[i][j] == '1') {
 int sqlen = 1;
 boolean flag = true;
 while (sqlen + i < rows && sqlen + j < cols && flag) {
 for (int k = j; k <= sqlen + j; k++) {
 if (matrix[i + sqlen][k] == '0') {
 flag = false;
 break;
 }
 }
 for (int k = i; k <= sqlen + i; k++) {
 if (matrix[k][j + sqlen] == '0') {
 flag = false;
 break;
 }
 }
 if (flag)
 sqlen++;
 }
 if (maxsqlen < sqlen) {
 maxsqlen = sqlen;
 }
 }
 }
 }
 return maxsqlen * maxsqlen;
 }
}

Complexity Analysis

Time complexity : O (mn) . In worst case, we need to traverse the complete matrix for every 1.
Space complexity : O(1). No extra space is used.

Approach #2 (Dynamic Programming) [Accepted]

Algorithm

We will explain this approach with the help of an example.

0 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1

We initialize another matrix (dp) with the same dimensions as the original one initialized with all 0’s.

dp(i,j) represents the side length of the maximum square whose bottom right corner is the cell with index (i,j) in the original matrix.

Starting from index (0,0), for every 1 found in the original matrix, we update the value of the current element as

dp(i, j) = min dp(i − 1, j), dp(i − 1, j − 1), dp(i, j − 1) + 1.

We also remember the size of the largest square found so far. In this way, we traverse the original matrix once and find out the required maximum size. This
gives the side length of the square (say maxsqlen). The required result is the area maxsqlen .

To understand how this solution works, see the figure below.

(2)

()

2

An entry 2 at (1, 3) implies that we have a square of side 2 up to that index in the original matrix. Similarly, a 2 at (1, 2) and (2, 2) implies that a square of
side 2 exists up to that index in the original matrix. Now to make a square of side 3, only a single entry of 1 is pending at (2, 3). So, we enter a 3
corresponding to that position in the dp array.

Now consider the case for the index (3, 4). Here, the entries at index (3, 3) and (2, 3) imply that a square of side 3 is possible up to their indices. But, the
entry 1 at index (2, 4) indicates that a square of side 1 only can be formed up to its index. Therefore, while making an entry at the index (3, 4), this element
obstructs the formation of a square having a side larger than 2. Thus, the maximum sized square that can be formed up to this index is of size 2 × 2.

Java

public class Solution {
 public int maximalSquare(char[][] matrix) {
 int rows = matrix.length, cols = rows > 0 ? matrix[0].length : 0;
 int[][] dp = new int[rows + 1][cols + 1];
 int maxsqlen = 0;
 for (int i = 1; i <= rows; i++) {
 for (int j = 1; j <= cols; j++) {
 if (matrix[i-1][j-1] == '1'){
 dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
 maxsqlen = Math.max(maxsqlen, dp[i][j]);
 }
 }
 }
 return maxsqlen * maxsqlen;
 }
}

Complexity Analysis

Time complexity : O(mn). Single pass.

Space complexity : O(mn). Another matrix of same size is used for dp.

Approach #3 (Better Dynamic Programming) [Accepted]

Algorithm

In the previous approach for calculating dp of i row we are using only the previous element and the (i − 1) row. Therefore, we don't need 2D dp matrix
as 1D dp array will be sufficient for this.

Initially the dp array contains all 0's. As we scan the elements of the original matrix across a row, we keep on updating the dp array as per the equation
dp[j] = min(dp[j − 1], dp[j], prev), where prev refers to the old dp[j − 1]. For every row, we repeat the same process and update in the same dp array.

th th

 Previous (/articles/best-time-buy-and-sell-stock-ii/) Next (/articles/container-most-water/)

RegisterLogin

Subscribe

subscribe for articles.

java

public class Solution {
 public int maximalSquare(char[][] matrix) {
 int rows = matrix.length, cols = rows > 0 ? matrix[0].length : 0;
 int[] dp = new int[cols + 1];
 int maxsqlen = 0, prev = 0;
 for (int i = 1; i <= rows; i++) {
 for (int j = 1; j <= cols; j++) {
 int temp = dp[j];
 if (matrix[i - 1][j - 1] == '1') {
 dp[j] = Math.min(Math.min(dp[j - 1], prev), dp[j]) + 1;
 maxsqlen = Math.max(maxsqlen, dp[j]);
 } else {
 dp[j] = 0;
 }
 prev = temp;
 }
 }
 return maxsqlen * maxsqlen;
 }
}

Complexity Analysis

Time complexity : O(mn). Single pass.

Space complexity : O(n). Another array which stores elements in a row is used for dp.

Analysis written by: @vinod23 (https://leetcode.com/vinod23)

Join the conversation

Average Rating: 5 (6 votes)
(/ratings/107/54/?return=/articles/maximal-square/) (/ratings/107/54/?return=/articles/maximal-square/) (/ratings/107/54/?return=/articles/maximal-square/) (/ratings/107/54/?return=/articles/maximal-square/)(/ratings/107/54/?return=/articles/maximal-square/) (/ratings/107/54/?return=/articles/maximal-square/) (/ratings/107/54/?return=/articles/maximal-square/) (/ratings/107/54/?return=/articles/maximal-square/)

1337c0d3r commented last month

@StefanPochmann (https://discuss.leetcode.com/uid/591) Thanks for pointing that out. I have fixed both problems' description.
(https://discuss.leetcode.com/user/1337c0d3r)

agave commented last month

@StefanPochmann (https://discuss.leetcode.com/uid/591) lol my advisor always points out the same thing when somebody says maximal
instead of maximum inappropriately!

(https://discuss.leetcode.com/user/agave)

https://leetcode.com/articles/best-time-buy-and-sell-stock-ii/
https://leetcode.com/articles/container-most-water/
https://leetcode.com/vinod23
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://leetcode.com/ratings/107/54/?return=/articles/maximal-square/
https://discuss.leetcode.com/uid/591
https://discuss.leetcode.com/user/1337c0d3r
https://discuss.leetcode.com/uid/591
https://discuss.leetcode.com/user/agave

Powered by NodeBB (http://nodebb.org) • View original thread (https://discuss.leetcode.com/topic/51242)

StefanPochmann commented last month

Btw, something about the title, more precisely the word "maximal": In math/compsci, that roughly speaking means something that can't be
made larger by adding something to it. For example, in the matrix

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

the single bold 1 is a maximal square-containing-only-ones. Because you can't add to it to get a larger square-containing-only-ones. It's
not a part of any larger square-containing-only-ones. It's not a maximum square-containing-only-ones, though, because there are larger
ones. So the title of the problem should say maximum, not maximal. (No, I don't expect this to be changed, just wanted to point it out,
maybe for the future or just for education :-)).

(https://discuss.leetcode.com/user/stefanpochmann)

StefanPochmann commented last month

Could the question and article finally be fixed, though? It says:

find the largest square containing all 1's and return its area.

It should say "containing only 1's". Same as in the Maximal Rectangle (https://leetcode.com/problems/maximal-rectangle/) problem which
asks for the "largest rectangle containing all ones" instead of the "largest rectangle containing only ones". Has been pointed out and
upvoted (https://discuss.leetcode.com/topic/30581/maximal-or-minimal) quite a bit already.

(https://discuss.leetcode.com/user/stefanpochmann)

Dale Seo commented last month

Thank you very much for your detailed explanation.
(https://discuss.leetcode.com/user/dale-

agave commented last month

Nice job guys
(https://discuss.leetcode.com/user/agave)

Frequently Asked Questions (/faq/) | Terms of Service (/tos/)

Privacy

Copyright © 2016 LeetCode

http://nodebb.org/
https://discuss.leetcode.com/topic/51242
https://discuss.leetcode.com/user/stefanpochmann
https://leetcode.com/problems/maximal-rectangle/
https://discuss.leetcode.com/topic/30581/maximal-or-minimal
https://discuss.leetcode.com/user/stefanpochmann
https://discuss.leetcode.com/user/dale-seo
https://discuss.leetcode.com/user/agave
https://www.iubenda.com/privacy-policy/499831
https://leetcode.com/faq/
https://leetcode.com/tos/

