经济学人科技 || 无敌小钢炮

原文:http://mp.weixin.qq.com/s?__biz=MzU1MDQwNTgzMg==&mid=2247491189&idx=1&sn=6c1bee56a8cc3a72d0fdf89ffa1af564&chksm=fba04dd2ccd7c4c46a555d36af88dc4f4bcac0692ce44ce24a3436cfb77fd79d246246e2d2e1#rd

1


导读


感谢思维导图作者
Step by step, 爱翻译爱研究的理工男,经济学人铁粉,二笔二口冲刺者


英语写作批改课上线啦(点击进入)
后续还将陆续推出更多系列写作课程,敬请期待!!


2


听力|精读|翻译|词组

 The Incredible Shrinking Machine

无敌小钢炮

英文部分选自经济学人20200718期科技版块

The Incredible Shrinking Machine

无敌小钢炮


A new material helps transistors become vanishingly small

新材料让晶体管变得极小


And more transistors mean more computing power

更多的晶体管意味着更强的计算力


There is an old joke in the semiconductor business that the number of people predicting the death of Moore’s law doubles every two years. This refers to another prediction, made in the 1970s by Gordon Moore, one of the founders of Intel, a giant chipmaker, that the number of transistors which can be crammed onto a silicon chip doubles every two years. When that number exceeded 1m in the mid-1980s, some said the rate of progress had to slow down. By 2005 the number of transistors on a chip rose above 1bn, which many thought was unsustainable. But there are now around 50bn transistors jostling for space on some chips and producers are gunning for more.


半导体行业长期以来流传着一个段子:预测摩尔定律将会失效的人数每两年翻一番。这涉及到另一个预测。在20世纪70年代,芯片制造大户英特尔的创始人之一戈登·摩尔预测:硅芯片上可加装的晶体管数量每两年翻一番。在20世纪80年代中期,晶体管数量超过100万个,那时就有人说,这个势头将会放缓。到2005年,单个芯片上的晶体管数量升至10亿以上,此时又有人说,这种情况无法持续下去。但是,如今一些芯片上的晶体管多达500亿个,一些芯片制造商对继续增加还雄心勃勃。


扩展阅读:芯片行业的困境

https://m.sohu.com/a/391979220_132567/?pvid=000115_3w_a&scm=0.0.0.0


In the current state of the art, the smallest components (transistors and diodes) made on a silicon chip are about seven nanometres (billionths of a metre) across. That is a thousandth of the diameter of a red blood cell. But problems are mounting. As components shrink, electrons start to leak from the connections between them, causing interference and unreliability. The prophets of doom have therefore returned. Once again, however, they look like being wrong. The answer to the electron-leakage problem is better insulation between chip components. And a group of researchers in South Korea and Britain think they have the insulator required. It is called thin-film amorphous boron nitride (a-BN).


在目前的技术水平下,硅芯片上能制成的最小元件(晶体管和二极管)的宽度约为7纳米(1纳米等于十亿分之一米),大概是血红细胞直径的千分之一。但是问题也越来越多。随着元件逐渐变小,电子开始从连接处泄漏出来,造成干扰和不稳定现象。质疑摩尔定律的人因此卷土重来。然而,他们似乎又失败了。电子泄漏问题的解决方案是提高元件之间的绝缘性。接着,来自韩国和英国的一组研究人员便找到了想要的绝缘体薄膜非晶态氮化硼(a-BN)


扩展阅读:为何7纳米制程成为半导体发展的瓶颈

http://m.elecfans.com/article/423307.html


The wonder that waits

见证奇迹


The backstory of this material is intriguing. Boron and nitrogen lie on either side of carbon in the periodic table, one consequence of which is that materials composed of equal numbers of boron and nitrogen atoms crystallise in the same ways that carbon does. There are, in other words, boron nitride equivalents of diamonds and graphite. There are also boron nitride versions of the tiny arrangements of carbon atoms known as fullerenes and nanotubes. So it was no surprise, after the creation in 2004 of yet another allotrope of carbon, graphene, which consists of single layers of atoms arranged in a hexagonal grid like a honeycomb, that it had a boron-nitride analogue. This has come to be known colloquially as white graphene.


这种材料背后的故事很有趣。在元素周期表中,硼和氮位于碳的两端,因此由相同数量的硼和氮原子组成的材料拥有与碳相同的结晶方式,也就是说存在和钻石、石墨结构类似的氮化硼。还有一些氮化硼类物质对应碳原子排列而成的一些微型材料,如富勒烯和纳米管。2004年,人们成功制备出碳的同素异形体石墨烯,它由单层原子组成,呈蜂窝状的六边形网格排列,而石墨烯存在一种氮化硼类似物,也便不足为奇。这种氮化硼材料俗称白色石墨烯。


To start with, white graphene was an also-ran in the new field of two-dimensional materials, as these sheets of atoms are often called. Real graphene, being incredibly strong and able to conduct heat and electricity extremely efficiently, was toted as a wonder material that might one day be used to make transistors much smaller and faster than the silicon-based variety, and thus keep Moore’s law ticking over. But for this purpose real graphene has a problem that is the obverse of its wonderfulness: it has no band gap.


首先,在二维材料(即这些原子薄膜的另一种称呼)新领域中,白色石墨烯曾经也不被看好。真正的石墨烯强度极大,且具有上佳的导热和导电性,因此被誉为奇迹材料,在将来也许可用于制造比硅基晶体管体积更小、速度更快的晶体管,使得摩尔定律能继续适用。但是,石墨烯由于没有带隙,在半导体领域的应用受阻。


知识扩展:

1. 零带隙:

https://baike.baidu.com/item/%E9%9B%B6%E5%B8%A6%E9%9A%99/22388711

2. 石墨烯(Graphene)是目前已知的世界上最薄、最坚硬、导电性最好的纳米材料,具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。石墨烯可由石墨剥离而成,为单层片状结构.

3. 白色石墨烯(white graphite)是六方氮化硼的别称。它是最简单的硼氮高分子,结构和形成的白色石墨烯晶体也与石墨烯相似,具有颇为相近的晶体参数。氮化硼主要用于耐火材料、半导体固相掺杂剂、原子堆的结构材料、防中子辐射的包装材料、火箭发动机组成材料、高温润滑剂和脱模剂等领域。


A material’s band gap is a measure of the energy required for an electron to flow through it. A narrow band gap means that material is a conductor. A wide band gap makes it an insulator. Graphene’s band gap of zero, which is most unusual, makes it a very good conductor indeed. But to be a semiconductor, the type of material from which transistors are fabricated, requires a “Goldilocks” band gap that lies between the two extremes—neither too narrow nor too wide. Various methods of tinkering have produced versions of graphene which possess this fairy-tale property, but transistors made with them are, so far, confined to the laboratory.


材料的带隙是指电子穿过它所需要的能量。带隙窄意味着材料是导体,带隙宽则表明它是绝缘体。石墨烯的带隙为零,这是最异乎寻常的一点,即它是非常优质的导体。但是要成为半导体(制造晶体管的材料类型),需要具备两个极端之间的金发姑娘Goldilocks)带隙——既不能太窄也不能太宽。科学家通过采用各种改进方法,已经生产出此种具有童话般特性的石墨烯;但迄今为止,以这种石墨烯为材料制造的晶体管仍只局限于实验室条件下使用。


Studying graphene and its analogues has, though, given technologists a huge amount of experience in the field of two-dimensional materials. And that is where boron nitride comes in. Though no use as a semiconductor it has a band gap wide enough to make it an extremely good insulator. It thus looks a suitable material, at least in principle, to deal with the problem of electron leakage.


不过,研究石墨烯及其类似物的过程使得技术人员在二维材料领域的研究积累了大量经验,对氮化硼的研究随即展开。尽管它不能用作半导体,但其带隙之宽足以让其成为极优良的绝缘体。所以,至少从原理上看,它是处理电子泄漏问题的合理材料。


Among the firms attempting to develop graphene transistors is Samsung, a giant South Korean electronics group. Its researchers have not, however, neglected boron nitride. One of them, Hyeon-Jin Shin, working in collaboration with Hyeon Suk Shin (no relation) of the Ulsan National Institute of Science and Technology in South Korea and Manish Chhowalla of the University of Cambridge, in Britain, has come up with a form of thin-film boron nitride that lacks the regular hexagonal structure of standard white graphene—hence the description “amorphous”. Crucially, the way this substance is made may permit the integration of boron nitride into the standard chipmaking process.


尝试开发石墨烯晶体管的公司中,就有韩国大型电子集团三星。三星的研究人员并没有忽视氮化硼的价值,三星的Hyeon-Jin Shin与韩国蔚山科学技术院的Hyeon Suk Shin(两人并非亲属)和英国剑桥大学的Manish Chhowalla合作,发明了一种薄膜氮化。它没有标准白色石墨烯的规则六边形结构,因此得名无定形(非晶态)氮化硼。至关重要的是,无定形氮化硼的制造方式可能会让这种材料运用到标准芯片制造工艺中。


补充阅读:三星发现半导体新材料

https://m.baiguanw.cn/a/news/kejichuangxin/jiaodian/2154959.html


A fab outcome

前景光明


Thin-film materials are usually created by a process called chemical vapour deposition (CVD), and a-BN is no exception. The technique, as its name suggests, involves vaporising the material in question, or chemicals that will react together to make it, and then depositing the result on a substrate. In the case of microelectronics, this substrate is usually a wafer of silicon.


通常,化学气相沉积过程(CVD)加工结束后,可获得薄膜材料。非晶氮化硼(a-BN)也不例外。化学气相沉积技术,顾名思义,就是将所需的材料或者会相互发生反应的化学物进行汽化,然后将生成物沉积在基质上。在微电子领域,这种基质通常都是硅晶片。


扩展阅读:化学气相沉积

https://baike.baidu.com/item/%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6%B2%89%E7%A7%AF/2968870


In general, for two-dimensional materials such as graphene and white graphene, CVD has to be done at above 700°C. This is too hot for existing fabs. But with thin-film a-bn, Hyeon-Jin Shin says, the temperature can be turned down as low as 400°C. That lower temperature should allow the material to be deposited directly onto silicon wafers and other substrates without having to retool the multi-billion-dollar factories, known as fabs, in which computer chips are made. This, she believes, means thin-film a-BN could be commercialised for chipmaking much faster than other two-dimensional materials.


一般而言,对于石墨烯和白色石墨烯这类二维材料,化学气相沉积需要在高于700℃的环境下进行,而这个温度对于现有的晶圆厂而言实在是太高了。但是Hyeon-Jin Shin表示,有了薄膜非晶氮化硼,该温度可以降至400℃。在这种相对低温下,材料可以直接沉积在硅晶片或者其他基质上,而不用重新为造价几十亿美元、用以制造计算机芯片的晶圆厂购买装备。她认为,这就意味着与其他二维材料相比,薄膜非晶氮化硼可以更快地实现商业化,用于芯片制造。


知识扩展:

二维材料:是指电子仅可在两个维度的纳米尺度(1-100nm[1]上自由运动(平面运动)的材料,如纳米薄膜、超晶格、量子阱。二维材料是伴随着2004年曼切斯特大学Geim 小组成功分离出单原子层的石墨材料——石墨烯(graphene) 而提出的。

纳米材料是指材料在某一维、二维或三维方向上的尺度达到纳米尺度。纳米材料可以分为零维材料、一维材料、二维材料、三维材料。零维材料是指电子无法自由运动的材料,如量子点、纳米颗粒与粉末。



The new, amorphous films are thicker than standard white graphene, but only slightly so. At three nanometres, they are well within the size-range needed to form part of the next sceptic-busting generation of components. They are also thermally, mechanically and electrically stable. And they preserve white graphene’s wide band gap, and thus its insulating properties. Add their fab-friendliness into the calculation and their future looks bright. With luck, then, the Moore’s-law naysayers have been outmanoeuvred again.


这种新型非晶薄膜比标准的白色石墨烯厚,但也仅仅是略厚一点。仅三纳米,却足以让怀疑论者哑口无言。与此同时,这些薄膜具有热学、机械和电学稳定性,并保留了白色石墨烯的宽带隙特性,因此也具有绝缘性能。再加上其适用于现有晶圆厂的特点,这种材料的前景光明。如果一切顺利,那么摩尔定律的唱衰者会再一次一败涂地。


翻译组:

Lee ,爱骑行的妇女之友,Timberland

Echo,北漂北外的江南人,央视boys and girls 的粉丝儿

Iris 少女心爆棚的前职场老阿姨,现国际女子修道院MTIer,外刊爱好者


校核组:

Chao,爱读书思考的DPhil candidateTE爱好者

Nikolai,爱想象的小双鱼,蒙特雷候补生,AKB49

Anne,女,爱读书爱Borges的小翻译,热爱文艺,经济学人爱好者


3


观点|评论|思考


本周感想

无忌,心怀梦想不断努力的理想主义男孩

这次文章好像有点太专业了,我们翻译组的小伙伴实在是辛苦,希望朋友们可以点个三连,或者帮忙多宣传宣传,也算是对大家的一个肯定哈哈哈哈。

我们就不讨论电子、石墨烯等等内容了,我们说点通俗的东西。文中摩尔作出的预测是晶体管数量每两年会翻一番,算是比较保守的预测,但反对摩尔的人却更为保守。那么我的问题是:我们是否应该对科技发展持有保守的态度?我个人认为,面对任何领域的科技,我们都不应该保守,应该抱着略微激进的态度去期待。

相信大家对腹腔镜手术都不陌生,如今很多胃肠外科、肛肠外科和泌尿外科等的手术基本都采取这种微创形式进行。但如今非常普及的技术在刚进入中国大陆时,也并不为人们所接受。腹腔镜手术最早是通过香港中文大学医学院前任院长钟尚志教授在广州的一台表演手术引进内陆的,随后也有内陆的医生开始独立开展这种新型手术,比如海军军医大学的刘彦教授率先开展了子宫内巨大肿瘤的切除等。但是这样的“打孔手术”是违背传统认知的。在传统观念当中,做手术就是开膛破肚,如今肚子上的几个孔挑战了人们的认知。我不是在谴责那些拒绝腹腔镜手术的人太过保守,他们的选择是无可厚非的,谁都害怕冒险,就像刚有外科手术时,也不是所有人都愿意尝试。但是,这些拒绝新技术的人就要承受更高的代价:更大的术后感染几率、更长的恢复时间以及创伤后遗症等等。如今达芬奇机器人这样的前沿设备也开始出现在国内各大医院的手术室里,为病患带去更有效的治疗。复旦大学附属妇产科医院(红房子医院)的华克勤教授就是这项技术很好的运用者。相信在将来,机器人手术会越来越普及,也会有越来越多的病患怀着开放的心态接受它。

不光是外科手术,还有其他很多领域,如制药、精密仪器和通信技术等等,我们都应该怀着略微激进的心态,期待科技会给我们带来惊喜。毕竟,有时候科技不是一点点进步的,或许研究人员一些天马行空的想法就会有意想不到的惊喜。旁观者和参与者,一起加油吧,稍稍浪漫主义一点,世界会更美好。


4


愿景


打造

独立思考 | 国际视野 | 英文学习

小组

现有经济学人讨论群一个,如果您也有兴趣,可联系小编WeChat : Education0603。由于每天加小编人很多,为提高效率,大家添加小编,暗号“TE讨论群", 通过后,请做好以下三点,否则不回复,谢谢理解。

1.转发译文到100人以上英语学习群或者朋友圈

2.回答三个问题(在公众号后台回复群规,请务必仔细阅读群规以及出现的三个问题)

3.加小编后做个简单的自我介绍,谢谢大家。