/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/pool_kernel.h" #include "paddle/phi/kernels/gpudnn/pool_gpudnn.h" #include "paddle/fluid/platform/device/gpu/gpu_dnn.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/pooling.h" namespace phi { template void PoolRawGPUDNNKernel(const Context& ctx, const DenseTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* out) { PADDLE_ENFORCE_EQ( paddle::platform::is_gpu_place(ctx.GetPlace()), true, errors::InvalidArgument("Pool operator CUDA kernel must use CUDAPlace " "rather than CPUPlace.")); const DenseTensor* input = &x; DenseTensor* output = out; std::vector paddings_ = paddings; std::vector kernel_size_ = kernel_size; ctx.template Alloc(output); const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC"); // update paddings_ auto x_dims = input->dims(); DDim data_dims; if (channel_last) { data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1); } else { data_dims = slice_ddim(x_dims, 2, x_dims.size()); } funcs::UpdatePadding(&paddings_, global_pooling, adaptive, padding_algorithm, data_dims, strides, kernel_size_); if (data_dims.size() * 2 == static_cast(paddings_.size())) { for (int i = 0; i < data_dims.size(); ++i) { paddings_.erase(paddings_.begin() + i + 1); } } if (global_pooling) { funcs::UpdateKernelSize(&kernel_size_, data_dims); } const std::string str_NCHW = "NCHW", str_NHWC = "NHWC"; const std::string str_NCDHW = "NCDHW", str_NDHWC = "NDHWC"; // -----------------transformed tensor ------------------------ DenseTensor transformed_input(input->type()); DenseTensor transformed_output(output->type()); GPUDNNDataLayout layout; if (data_format == str_NDHWC) { layout = GPUDNNDataLayout::kNCDHW; std::vector axis{0, 4, 1, 2, 3}; // input transformed_input.Resize(input->dims()); auto in_dims_vec = vectorize(input->dims()); in_dims_vec[1] = input->dims()[4]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; in_dims_vec[4] = input->dims()[3]; transformed_input.Resize(make_ddim(in_dims_vec)); ctx.Alloc(&transformed_input, input->type()); funcs::Transpose trans5; trans5(ctx, *input, &transformed_input, axis); // output transformed_output.Resize(output->dims()); auto out_dims_vec = vectorize(output->dims()); out_dims_vec[1] = output->dims()[4]; out_dims_vec[2] = output->dims()[1]; out_dims_vec[3] = output->dims()[2]; out_dims_vec[4] = output->dims()[3]; transformed_output.Resize(make_ddim(out_dims_vec)); #ifdef PADDLE_WITH_HIP // MIOPEN not support NHWC data layout } else if (data_format == str_NHWC) { layout = GPUDNNDataLayout::kNCHW; std::vector axis{0, 3, 1, 2}; transformed_input.Resize(input->dims()); auto in_dims_vec = vectorize(input->dims()); in_dims_vec[1] = input->dims()[3]; in_dims_vec[2] = input->dims()[1]; in_dims_vec[3] = input->dims()[2]; transformed_input.Resize(make_ddim(in_dims_vec)); ctx.Alloc(&transformed_input, input->type()); funcs::Transpose trans; trans(ctx, *input, &transformed_input, axis); transformed_output.Resize(output->dims()); auto out_dims_vec = vectorize(output->dims()); out_dims_vec[1] = output->dims()[3]; out_dims_vec[2] = output->dims()[1]; out_dims_vec[3] = output->dims()[2]; transformed_output.Resize(make_ddim(out_dims_vec)); #endif } else { layout = GetLayoutFromStr(data_format); transformed_input = *input; transformed_output = *output; } const T* tranformed_input_data = transformed_input.data(); T* tranformed_output_data = ctx.template Alloc(&transformed_output); // ------------------- cudnn descriptors --------------------- ScopedTensorDescriptor input_desc; ScopedTensorDescriptor output_desc; ScopedPoolingDescriptor pool_desc; #ifdef PADDLE_WITH_HIP miopenTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, vectorize(transformed_input.dims())); miopenTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, vectorize(transformed_output.dims())); #else cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor( layout, vectorize(transformed_input.dims())); cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor( layout, vectorize(transformed_output.dims())); #endif PoolingMode pooling_mode; if (pooling_type == "max") { pooling_mode = PoolingMode::kMaximum; } else { pooling_mode = exclusive ? PoolingMode::kAverageExclusive : PoolingMode::kAverageInclusive; } #ifdef PADDLE_WITH_HIP miopenPoolingDescriptor_t cudnn_pool_desc = pool_desc.descriptor(pooling_mode, kernel_size_, paddings_, strides); #else cudnnPoolingDescriptor_t cudnn_pool_desc = pool_desc.descriptor(pooling_mode, kernel_size_, paddings_, strides); #endif // ------------------- cudnn pool algorithm --------------------- auto handle = ctx.cudnn_handle(); ScalingParamType alpha = 1.0f, beta = 0.0f; #ifdef PADDLE_WITH_HIP char* pool_workspace; size_t pool_workernel_size_ = 0; PADDLE_ENFORCE_GPU_SUCCESS(dynload::miopenPoolingGetWorkSpaceSizeV2( cudnn_pool_desc, cudnn_output_desc, &pool_workernel_size_)); PADDLE_ENFORCE_GPU_SUCCESS(hipMalloc(&pool_workspace, pool_workernel_size_)); PADDLE_ENFORCE_GPU_SUCCESS( dynload::miopenPoolingForward(handle, cudnn_pool_desc, &alpha, cudnn_input_desc, tranformed_input_data, &beta, cudnn_output_desc, tranformed_output_data, false, pool_workspace, pool_workernel_size_)); PADDLE_ENFORCE_GPU_SUCCESS(hipFree(pool_workspace)); #else PADDLE_ENFORCE_GPU_SUCCESS( dynload::cudnnPoolingForward(handle, cudnn_pool_desc, &alpha, cudnn_input_desc, tranformed_input_data, &beta, cudnn_output_desc, tranformed_output_data)); #endif // add if (data_format == str_NDHWC) { std::vector axis{0, 2, 3, 4, 1}; funcs::Transpose trans5_v2; trans5_v2(ctx, transformed_output, output, axis); } #ifdef PADDLE_WITH_HIP // MIOPEN not support NHWC data layout if (data_format == str_NHWC) { std::vector axis{0, 2, 3, 1}; funcs::Transpose trans; trans(ctx, transformed_output, output, axis); } #endif } template void Pool2dGPUDNNKernel(const Context& ctx, const DenseTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* out) { PoolRawGPUDNNKernel(ctx, x, kernel_size, strides, paddings, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm, out); } template void Pool3dGPUDNNKernel(const Context& ctx, const DenseTensor& x, const std::vector& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* out) { PoolRawGPUDNNKernel(ctx, x, kernel_size, strides, paddings, exclusive, data_format, pooling_type, global_pooling, adaptive, padding_algorithm, out); } } // namespace phi using phi::dtype::float16; #ifdef PADDLE_WITH_HIP // MIOPEN do not support double PD_REGISTER_KERNEL( pool2d, GPUDNN, ALL_LAYOUT, phi::Pool2dGPUDNNKernel, float, float16) {} PD_REGISTER_KERNEL( pool3d, GPUDNN, ALL_LAYOUT, phi::Pool3dGPUDNNKernel, float, float16) {} #else PD_REGISTER_KERNEL(pool2d, GPUDNN, ALL_LAYOUT, phi::Pool2dGPUDNNKernel, float, double, float16) {} PD_REGISTER_KERNEL(pool3d, GPUDNN, ALL_LAYOUT, phi::Pool3dGPUDNNKernel, float, double, float16) {} #endif