# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import unittest import sys sys.path.append("..") from op_test import OpTest import paddle import paddle.fluid as fluid paddle.enable_static() class TestFlattenOp(OpTest): def setUp(self): self.set_mlu() self.op_type = "flatten_contiguous_range" self.place = paddle.MLUPlace(0) self.start_axis = 0 self.stop_axis = -1 self.dtype = np.float64 self.init_test_case() self.inputs = {"X": np.random.random(self.in_shape).astype(self.dtype)} self.init_attrs() self.outputs = { "Out": self.inputs["X"].reshape(self.new_shape), "XShape": np.random.random(self.in_shape).astype("float32") } def set_mlu(self): self.__class__.use_mlu = True def test_check_output(self): self.check_output_with_place(self.place, no_check_set=["XShape"]) def test_check_grad(self): #pass self.check_grad_with_place(self.place, ["X"], "Out") def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = -1 self.new_shape = (120) def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOp_1(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 1 self.stop_axis = 2 self.new_shape = (3, 10, 4) def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOp_2(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = 1 self.new_shape = (6, 5, 4) def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOp_3(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = 2 self.new_shape = (30, 4) def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOp_4(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = -2 self.stop_axis = -1 self.new_shape = (3, 2, 20) def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOp_5(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 2 self.stop_axis = 2 self.new_shape = (3, 2, 5, 4) def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOpSixDims(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 3, 2, 4, 4) self.start_axis = 3 self.stop_axis = 5 self.new_shape = (3, 2, 3, 32) def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOp_Float32(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = 1 self.new_shape = (6, 5, 4) self.dtype = np.float32 def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } class TestFlattenOp_int32(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = 1 self.new_shape = (6, 5, 4) self.dtype = np.int32 def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } def test_check_grad(self): pass class TestFlattenOp_uint8(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = 1 self.new_shape = (6, 5, 4) self.dtype = np.uint8 def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } def test_check_grad(self): pass class TestFlattenOp_int8(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = 1 self.new_shape = (6, 5, 4) self.dtype = np.int8 def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } def test_check_grad(self): pass class TestFlattenOp_int64(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.start_axis = 0 self.stop_axis = 1 self.new_shape = (6, 5, 4) self.dtype = np.int64 def init_attrs(self): self.attrs = { "start_axis": self.start_axis, "stop_axis": self.stop_axis } def test_check_grad(self): pass class TestFlatten2OpError(unittest.TestCase): def test_errors(self): image_shape = (2, 3, 4, 4) x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100. x = x.astype('float32') def test_ValueError1(): x_var = paddle.static.data( name="x", shape=image_shape, dtype='float32') out = paddle.flatten(x_var, start_axis=2, stop_axis=1) self.assertRaises(ValueError, test_ValueError1) def test_ValueError2(): x_var = paddle.static.data( name="x", shape=image_shape, dtype='float32') paddle.flatten(x_var, start_axis=10, stop_axis=1) self.assertRaises(ValueError, test_ValueError2) def test_ValueError3(): x_var = paddle.static.data( name="x", shape=image_shape, dtype='float32') paddle.flatten(x_var, start_axis=2, stop_axis=10) self.assertRaises(ValueError, test_ValueError3) def test_type(): # dtype must be float32, float64, int8, int32, int64, uint8. x2 = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100. x2 = x2.astype('float16') x2_var = paddle.fluid.data( name='x2', shape=[3, 2, 4, 5], dtype='float16') paddle.flatten(x2_var) self.assertRaises(TypeError, test_type) def test_InputError(): out = paddle.flatten(x) self.assertRaises(ValueError, test_InputError) class TestStaticFlattenPythonAPI(unittest.TestCase): def execute_api(self, x, start_axis=0, stop_axis=-1): return paddle.flatten(x, start_axis, stop_axis) def test_static_api(self): paddle.enable_static() np_x = np.random.rand(2, 3, 4, 4).astype('float32') main_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, paddle.static.Program()): x = paddle.static.data( name="x", shape=[2, 3, 4, 4], dtype='float32') out = self.execute_api(x, start_axis=-2, stop_axis=-1) exe = paddle.static.Executor(place=paddle.MLUPlace(0)) fetch_out = exe.run(main_prog, feed={"x": np_x}, fetch_list=[out]) self.assertTrue((2, 3, 16) == fetch_out[0].shape) class TestStaticInplaceFlattenPythonAPI(TestStaticFlattenPythonAPI): def execute_api(self, x, start_axis=0, stop_axis=-1): return x.flatten_(start_axis, stop_axis) class TestFlattenPython(unittest.TestCase): def test_python_api(self): image_shape = (2, 3, 4, 4) x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100. x = x.astype('float32') def test_InputError(): out = paddle.flatten(x) self.assertRaises(ValueError, test_InputError) def test_Negative(): paddle.disable_static(paddle.MLUPlace(0)) img = paddle.to_tensor(x) out = paddle.flatten(img, start_axis=-2, stop_axis=-1) return out.numpy().shape res_shape = test_Negative() self.assertTrue((2, 3, 16) == res_shape) if __name__ == "__main__": unittest.main()