未验证 提交 553afc07 编写于 作者: Y Yiqun Liu 提交者: GitHub

Rename the general elementwise and broadcast functions. (#39623)

上级 267275d9
......@@ -36,7 +36,6 @@ limitations under the License. */
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
namespace paddle {
namespace operators {
......
......@@ -15,45 +15,13 @@
#pragma once
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
// only can include the headers in paddle/top/api dirs
#include "paddle/pten/kernels/gpu/elementwise.h"
namespace paddle {
namespace operators {
namespace kps = paddle::operators::kernel_primitives;
template <ElementwiseType ET, typename InT, typename OutT, typename Functor,
int NumOuts = 1>
void LaunchBroadcastElementwiseCudaKernel(
const KPDevice &ctx, const std::vector<const framework::Tensor *> &ins,
std::vector<framework::Tensor *> *outs, int axis, Functor func) {
std::vector<const pten::DenseTensor *> pt_inputs;
std::vector<pten::DenseTensor *> pt_outputs;
// TODO(YuanRisheng) *_tmp for cache DenseTensor, because the temporary
// DenseTensor obj
// generated by MakePtenDenseTensor can be destroyed when exits loop. *_tmp
// can be deleted
// when DenseTensor support copy constructor.
std::vector<std::unique_ptr<pten::DenseTensor>> pt_inputs_tmp;
std::vector<std::unique_ptr<pten::DenseTensor>> pt_outputs_tmp;
for (auto in : ins) {
pt_inputs_tmp.emplace_back(
std::move(paddle::experimental::MakePtenDenseTensor(*in)));
}
for (auto out : *outs) {
pt_outputs_tmp.emplace_back(
std::move(paddle::experimental::MakePtenDenseTensor(*out)));
}
for (int i = 0; i < pt_inputs_tmp.size(); i++) {
pt_inputs.push_back(pt_inputs_tmp[i].get());
}
for (int i = 0; i < pt_outputs_tmp.size(); i++) {
pt_outputs.push_back(pt_outputs_tmp[i].get());
}
pten::LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
ctx, pt_inputs, &pt_outputs, axis, func);
}
template <ElementwiseType ET, typename InT, typename OutT, typename Functor,
int NumOuts = 1>
void LaunchElementwiseCudaKernel(
......@@ -82,7 +50,7 @@ void LaunchElementwiseCudaKernel(
for (int i = 0; i < pt_outputs_tmp.size(); i++) {
pt_outputs.push_back(pt_outputs_tmp[i].get());
}
pten::LaunchElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
pten::funcs::BroadcastKernel<ET, InT, OutT, Functor, NumOuts>(
ctx, pt_inputs, &pt_outputs, axis, func);
}
......
......@@ -19,7 +19,7 @@ limitations under the License. */
// only can include the headers in paddle/top/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/kernels/gpu/elementwise.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
namespace paddle {
namespace operators {
......@@ -53,8 +53,8 @@ void LaunchSameDimsElementwiseCudaKernel(
for (int i = 0; i < pt_outputs_tmp.size(); i++) {
pt_outputs.push_back(pt_outputs_tmp[i].get());
}
pten::funcs::LaunchSameDimsElementwiseCudaKernel<OutT, Functor, NumOuts>(
ctx, pt_inputs, &pt_outputs, func);
pten::funcs::ElementwiseKernel<OutT, Functor, NumOuts>(ctx, pt_inputs,
&pt_outputs, func);
}
} // namespace operators
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/pten/kernels/funcs/elementwise_base.h"
#if defined(__NVCC__) || defined(__HIPCC__)
namespace kps = pten::kps;
#endif
namespace pten {
namespace funcs {
struct DimensionsTransform {
using DimVector = std::vector<int64_t>;
typedef void (*MergeFunctor)(
bool &, std::vector<DimVector> &, DimVector &, int, int);
int64_t dim_size;
DimVector out_dims;
std::vector<DimVector> in_dims;
private:
// To compensate the lackage of input_tensors` dimension with input variable
// 'axis'
void InputDimensionsExtend(int N, int axis) {
for (auto &in_dim : in_dims) {
int64_t in_idx = 0;
if (in_dim.size() < dim_size) {
DimVector tmp_dim(dim_size, 1);
do {
if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
tmp_dim[axis] = in_dim[in_idx];
in_idx++;
axis++;
} else {
PADDLE_THROW(pten::errors::InvalidArgument(
"The %d-th dimension of input tensor is expected to be equal "
"with the %d-th dimension of output tensor %d or 1, but "
"recieved %d.",
in_idx + 1,
axis + 1,
out_dims[axis],
in_dim[in_idx]));
}
} while (in_idx < in_dim.size());
in_dim.resize(dim_size);
std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
} else {
do {
if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
in_idx++;
} else {
PADDLE_THROW(pten::errors::InvalidArgument(
"The %d-th dimension of input tensor is expected to be equal "
"with the %d-th dimension of output tensor %d or 1, but "
"recieved %d.",
in_idx + 1,
in_idx + 1,
out_dims[in_idx],
in_dim[in_idx]));
}
} while (in_idx < dim_size);
}
std::reverse(in_dim.begin(), in_dim.end());
}
std::reverse(out_dims.begin(), out_dims.end());
}
template <typename MergeFunctor>
__inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
(*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
vec->begin() + m_idx,
1,
std::multiplies<int64_t>());
vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
};
int64_t i = 0;
while (i < dim_size) {
int cnt = 0;
int low_idx = i;
bool equal = true;
do {
merge_func(equal, in_dims, out_dims, i, N);
if (equal) {
i++;
cnt++;
} else {
break;
}
} while (i < dim_size);
if (cnt > 1) {
for (auto &in_dim : in_dims) {
VectorReorganise(&in_dim, low_idx, i);
}
VectorReorganise(&out_dims, low_idx, i);
dim_size -= --cnt;
i -= cnt;
} else if (cnt < 1) {
i++;
}
}
}
public:
explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
const pten::DDim &dims,
int axis) {
const int N = max(static_cast<int>(ins.size()), 2);
dim_size = dims.size();
out_dims = pten::vectorize<int64_t>(dims);
in_dims.resize(N);
if (ins.size() == 1) {
// when ins.size() = 1, broadcast input to output
in_dims[0] = pten::vectorize<int64_t>(ins[0]->dims());
in_dims[1] = out_dims;
// Add out_dims to in_dims to avoid errors in dims merging
} else {
for (int j = 0; j < N; ++j) {
in_dims[j] = pten::vectorize<int64_t>(ins[j]->dims());
}
}
InputDimensionsExtend(N, axis);
auto merge_sequential_dims = [](bool &equal,
std::vector<DimVector> &in_dims,
DimVector &out,
int i,
int num) {
for (int j = 1; j < num; ++j) {
equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
}
};
auto merge_sequential_one_dims = [](bool &equal,
std::vector<DimVector> &in_dims,
DimVector &out,
int i,
int num) {
equal = in_dims[0][i] == 1;
if (equal) {
for (int j = 1; j < num; ++j) {
equal &= in_dims[j][i] == out[i];
}
}
};
// To Merge the dimensions of input_tensors while the consequtive
// equal-dimensions appears.
MergeFunctor merge_ptr = merge_sequential_dims;
MergeDimensions<MergeFunctor>(merge_ptr, N);
int min_idx = 0;
int min_val = std::accumulate(
in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
for (int j = 1; j < N; ++j) {
int temp = std::accumulate(
in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
min_val = min_val > temp ? temp : min_val;
min_idx = min_val == temp ? j : min_idx;
}
std::swap(in_dims[0], in_dims[min_idx]);
// To Merge the dimension of input_tensors while the consequtive
// 1-value-dimensions appears.
merge_ptr = merge_sequential_one_dims;
MergeDimensions<MergeFunctor>(merge_ptr, N);
std::swap(in_dims[min_idx], in_dims[0]);
}
};
#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
T *dst,
const _ptr_ T *src,
uint32_t block_offset,
const kps::details::BroadcastConfig<Rank> &config,
int numel,
int num,
int need_broadcast) {
// numel : whole num of output
// num: how many data will be deal with in this time
if (need_broadcast) {
kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
dst, src, block_offset, config, numel);
} else {
kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
}
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
int Rank,
bool IsBoundary = false>
__device__ void VectorizedBroadcastKernelImpl(
const pten::Array<const _ptr_ InT *__restrict__, Arity> &ins,
pten::Array<_ptr_ OutT *, NumOuts> outs,
const pten::Array<int, Arity> &use_broadcast,
uint32_t numel,
const pten::Array<kps::details::BroadcastConfig<Rank>, Arity> &configs,
int num,
int block_offset,
Functor func) {
InT args[Arity][VecSize];
ConditionalT<OutT, NumOuts> result[VecSize];
#pragma unroll
for (int i = 0; i < Arity; i++) {
kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
ins[i],
block_offset,
configs[i],
numel,
num,
use_broadcast[i]);
}
constexpr bool kCallElementwiseAny =
paddle::platform::FunctionTraits<Functor>::has_pointer_args;
pten::funcs::ElementwisePrimitiveCaller<InT,
ConditionalT<OutT, NumOuts>,
VecSize,
Functor,
Arity,
kCallElementwiseAny>()(
func, args, result);
pten::funcs::ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
outs, result, block_offset, num);
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
int Rank>
__global__ void VectorizedBroadcastKernel(
pten::Array<const _ptr_ InT *__restrict__, Arity> ins,
pten::Array<_ptr_ OutT *, NumOuts> outs,
pten::Array<int, Arity> use_broadcast,
uint32_t numel,
pten::Array<kps::details::BroadcastConfig<Rank>, Arity> configs,
int main_offset,
int tail_tid,
Functor func) {
int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
#ifdef PADDLE_WITH_XPU2
for (; block_offset < main_offset; block_offset += stride) {
VectorizedBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
false>(ins,
outs,
use_broadcast,
numel,
configs,
BLOCK_NUM_X * VecSize,
block_offset,
func);
}
int num = numel - block_offset;
if (num > 0) {
VectorizedBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
true>(
ins, outs, use_broadcast, numel, configs, num, block_offset, func);
}
#else
if (block_offset < main_offset) {
VectorizedBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
false>(ins,
outs,
use_broadcast,
numel,
configs,
BLOCK_NUM_X * VecSize,
block_offset,
func);
} else {
VectorizedBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
true>(
ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
}
#endif
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
int Rank>
void LaunchBroadcastKernel(const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func,
DimensionsTransform merge_dims) {
int numel = (*outs)[0]->numel();
pten::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
pten::Array<int, Arity> use_broadcast;
pten::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
pten::Array<_ptr_ OutT *, NumOuts> outs_data;
for (int i = 0; i < NumOuts; ++i) {
outs_data[i] = ctx.Alloc<OutT>((*outs)[i]);
}
for (int i = 0; i < Arity; i++) {
use_broadcast[i] = (ins[i]->numel() != numel);
ins_data[i] = (_ptr_ InT *)(ins[i]->data<InT>());
if (use_broadcast[i]) {
// get the broadcast config,
// if data shape is[m, n], then you should set data_dim = {n, m}
// eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
configs[i] = kps::details::BroadcastConfig<Rank>(
merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
}
}
#ifdef PADDLE_WITH_XPU2
const int threads = 64;
const int blocks = 8;
int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
int tail_tid = numel % (VecSize * threads);
auto stream = ctx.x_context()->xpu_stream;
VectorizedBroadcastKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank><<<blocks, threads, stream>>>(ins_data,
outs_data,
use_broadcast,
numel,
configs,
main_offset,
tail_tid,
func);
#else
const int threads = 256;
int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;
int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
int tail_tid = numel % (VecSize * threads);
auto stream = ctx.stream();
VectorizedBroadcastKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank><<<blocks, threads, 0, stream>>>(ins_data,
outs_data,
use_broadcast,
numel,
configs,
main_offset,
tail_tid,
func);
#endif
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
void BroadcastKernelForDifferentDimSize(
const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);
#define CALL_BROADCAST_FOR_DIM_SIZE(rank) \
case rank: { \
LaunchBroadcastKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
ctx, ins, outs, func, merge_dims); \
} break;
switch (merge_dims.dim_size) {
CALL_BROADCAST_FOR_DIM_SIZE(1);
CALL_BROADCAST_FOR_DIM_SIZE(2);
CALL_BROADCAST_FOR_DIM_SIZE(3);
CALL_BROADCAST_FOR_DIM_SIZE(4);
CALL_BROADCAST_FOR_DIM_SIZE(5);
CALL_BROADCAST_FOR_DIM_SIZE(6);
CALL_BROADCAST_FOR_DIM_SIZE(7);
CALL_BROADCAST_FOR_DIM_SIZE(8);
default: {
PADDLE_THROW(pten::errors::InvalidArgument(
"The maximum dimension of input tensor is expected to be less than "
"%d, but recieved %d.",
merge_dims.dim_size,
pten::DDim::kMaxRank));
}
}
#undef CALL_BROADCAST_FOR_DIM_SIZE
}
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void BroadcastKernelForDifferentVecSize(
const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
using Traits = paddle::platform::FunctionTraits<Functor>;
const int kArity =
Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
PADDLE_ENFORCE_EQ(ins.size(),
kArity,
pten::errors::InvalidArgument(
"The number of inputs is expected to be equal to the "
"arity of functor. But recieved: the number of inputs "
"is %d, the arity of functor is %d.",
ins.size(),
kArity));
PADDLE_ENFORCE_LE(kArity,
3,
pten::errors::InvalidArgument(
"Currently only broadcast of ternary is supported "
"and verified, but received %d.",
kArity));
PADDLE_ENFORCE_EQ(outs->size(),
NumOuts,
pten::errors::InvalidArgument(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d.",
outs->size(),
NumOuts));
int in_vec_size = 4;
int out_vec_size = 4;
if (NumOuts > 1) {
for (int i = 0; i < NumOuts; ++i) {
PADDLE_ENFORCE_EQ(
(*outs)[i]->dims(),
(*outs)[0]->dims(),
pten::errors::InvalidArgument(
"The shape of each output tensor shall be identical yet, but "
"%d-th output tensor`s shape is not.",
i));
out_vec_size = std::min(
paddle::platform::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()),
out_vec_size);
}
} else {
out_vec_size =
paddle::platform::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
}
for (auto *in : ins) {
auto temp_size = paddle::platform::GetVectorizedSize<InT>(in->data<InT>());
in_vec_size = in->dims() == (*outs)[0]->dims()
? std::min(temp_size, in_vec_size)
: in_vec_size;
}
int vec_size = std::min(out_vec_size, in_vec_size);
switch (vec_size) {
case 4: {
BroadcastKernelForDifferentDimSize<InT,
OutT,
Functor,
kArity,
NumOuts,
4>(ctx, ins, outs, axis, func);
break;
}
case 2: {
BroadcastKernelForDifferentDimSize<InT,
OutT,
Functor,
kArity,
NumOuts,
2>(ctx, ins, outs, axis, func);
break;
}
case 1: {
BroadcastKernelForDifferentDimSize<InT,
OutT,
Functor,
kArity,
NumOuts,
1>(ctx, ins, outs, axis, func);
break;
}
default: {
PADDLE_THROW(pten::errors::Unimplemented(
"Unsupported vectorized size: %d!", vec_size));
break;
}
}
}
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void BroadcastKernel(const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
std::vector<int> dims_size;
bool no_broadcast_flag = true;
for (auto *in : ins) {
no_broadcast_flag &= ins[0]->dims() == in->dims();
dims_size.emplace_back(in->dims().size());
}
if (ins.size() > 0 && outs->size() > 0) {
no_broadcast_flag &= outs->at(0)->dims() == ins[0]->dims();
}
if (no_broadcast_flag) {
pten::funcs::ElementwiseKernel<OutT, Functor, NumOuts>(
ctx, ins, outs, func);
} else {
axis = axis == -1
? *std::max_element(dims_size.begin(), dims_size.end()) -
*std::min_element(dims_size.begin(), dims_size.end())
: axis;
BroadcastKernelForDifferentVecSize<ET, InT, OutT, Functor, NumOuts>(
ctx, ins, outs, axis, func);
}
}
#endif
} // namespace funcs
} // namespace pten
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#ifdef __HIPCC__
#define ELEMENTWISE_BLOCK_SIZE 256
#else
#define ELEMENTWISE_BLOCK_SIZE 512
#endif
namespace pten {
namespace funcs {
/*
* According to NVIDIA, if number of threads per block is 64/128/256/512,
* cuda performs better. And number of blocks should be greater (at least
* 2x~4x) than number of SMs. Hence, SM count is took into account within
* this function to determine the right number of threads per block.
*/
inline int GetThreadsConfig(const pten::GPUContext &ctx,
int64_t numel,
int vec_size) {
int threads = ELEMENTWISE_BLOCK_SIZE;
int sm_count = ctx.GetSMCount();
int active_threads_num = numel / vec_size;
if (active_threads_num / (sm_count << 1) < ELEMENTWISE_BLOCK_SIZE) {
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about twice of SM, to acquire better performance.
threads = paddle::platform::RoundToPowerOfTwo(active_threads_num /
(sm_count << 1));
} else if (active_threads_num / (sm_count << 2) < ELEMENTWISE_BLOCK_SIZE) {
// Round up threads number into an exponential multiple of 2, while number
// of acitve blocks is about 4 times of SM, to acquire better performance.
threads = paddle::platform::RoundToPowerOfTwo(active_threads_num /
(sm_count << 2));
}
// Number of threads per block shall be larger than 64.
return std::max(64, threads);
}
} // namespace funcs
} // namespace pten
......@@ -746,11 +746,10 @@ void ElementwiseCudaKernel(const KPDevice &ctx,
}
template <typename OutT, typename Functor, int NumOuts = 1>
void LaunchSameDimsElementwiseCudaKernel(
const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func) {
void ElementwiseKernel(const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func) {
using Traits = paddle::platform::FunctionTraits<Functor>;
const int kArity = Traits::arity;
PADDLE_ENFORCE_EQ(ins.size(),
......
......@@ -47,8 +47,7 @@ void AbsKernel(const Context& ctx, const DenseTensor& x, DenseTensor* out) {
std::vector<DenseTensor*> outs = {out};
auto functor = CudaAbsFunctor<T>();
funcs::LaunchSameDimsElementwiseCudaKernel<pten::funcs::Real<T>>(
ctx, ins, &outs, functor);
funcs::ElementwiseKernel<pten::funcs::Real<T>>(ctx, ins, &outs, functor);
}
} // namespace pten
......
......@@ -44,7 +44,7 @@ void CastCUDAKernelImpl(const GPUContext& dev_ctx,
inputs.emplace_back(&x);
outputs.emplace_back(out);
dev_ctx.Alloc<OutT>(out);
pten::funcs::LaunchSameDimsElementwiseCudaKernel<OutT>(
pten::funcs::ElementwiseKernel<OutT>(
dev_ctx, inputs, &outputs, CastFuctor<InT, OutT>());
}
......
......@@ -15,9 +15,8 @@ limitations under the License. */
#pragma once
#include "paddle/pten/kernels/copy_kernel.h"
#include "paddle/pten/kernels/funcs/broadcast_function.h"
#include "paddle/pten/kernels/funcs/common_shape.h"
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
#include "paddle/pten/kernels/gpu/reduce.h"
#ifdef __HIPCC__
......@@ -36,555 +35,8 @@ constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
} while (0)
namespace pten {
// FORWARD CODE
struct DimensionsTransform {
using DimVector = std::vector<int64_t>;
typedef void (*MergeFunctor)(
bool &, std::vector<DimVector> &, DimVector &, int, int);
int64_t dim_size;
DimVector out_dims;
std::vector<DimVector> in_dims;
private:
// To compensate the lackage of input_tensors` dimension with input variable
// 'axis'
void InputDimensionsExtend(int N, int axis) {
for (auto &in_dim : in_dims) {
int64_t in_idx = 0;
if (in_dim.size() < dim_size) {
DimVector tmp_dim(dim_size, 1);
do {
if (in_dim[in_idx] == out_dims[axis] || in_dim[in_idx] == 1) {
tmp_dim[axis] = in_dim[in_idx];
in_idx++;
axis++;
} else {
PADDLE_THROW(paddle::platform::errors::InvalidArgument(
"The %d-th dimension of input tensor is expected to be equal "
"with the %d-th dimension of output tensor %d or 1, but "
"recieved %d.",
in_idx + 1,
axis + 1,
out_dims[axis],
in_dim[in_idx]));
}
} while (in_idx < in_dim.size());
in_dim.resize(dim_size);
std::copy(tmp_dim.begin(), tmp_dim.end(), in_dim.begin());
} else {
do {
if (in_dim[in_idx] == out_dims[in_idx] || in_dim[in_idx] == 1) {
in_idx++;
} else {
PADDLE_THROW(paddle::platform::errors::InvalidArgument(
"The %d-th dimension of input tensor is expected to be equal "
"with the %d-th dimension of output tensor %d or 1, but "
"recieved %d.",
in_idx + 1,
in_idx + 1,
out_dims[in_idx],
in_dim[in_idx]));
}
} while (in_idx < dim_size);
}
std::reverse(in_dim.begin(), in_dim.end());
}
std::reverse(out_dims.begin(), out_dims.end());
}
template <typename MergeFunctor>
__inline__ void MergeDimensions(MergeFunctor merge_func, int N) {
auto VectorReorganise = [](DimVector *vec, int l_idx, int m_idx) {
(*vec)[m_idx - 1] = std::accumulate(vec->begin() + l_idx,
vec->begin() + m_idx,
1,
std::multiplies<int64_t>());
vec->erase(vec->begin() + l_idx, vec->begin() + m_idx - 1);
};
int64_t i = 0;
while (i < dim_size) {
int cnt = 0;
int low_idx = i;
bool equal = true;
do {
merge_func(equal, in_dims, out_dims, i, N);
if (equal) {
i++;
cnt++;
} else {
break;
}
} while (i < dim_size);
if (cnt > 1) {
for (auto &in_dim : in_dims) {
VectorReorganise(&in_dim, low_idx, i);
}
VectorReorganise(&out_dims, low_idx, i);
dim_size -= --cnt;
i -= cnt;
} else if (cnt < 1) {
i++;
}
}
}
public:
explicit DimensionsTransform(const std::vector<const DenseTensor *> &ins,
const pten::DDim &dims,
int axis) {
const int N = max(static_cast<int>(ins.size()), 2);
dim_size = dims.size();
out_dims = pten::vectorize<int64_t>(dims);
in_dims.resize(N);
if (ins.size() == 1) {
// when ins.size() = 1, broadcast input to output
in_dims[0] = pten::vectorize<int64_t>(ins[0]->dims());
in_dims[1] = out_dims;
// Add out_dims to in_dims to avoid errors in dims merging
} else {
for (int j = 0; j < N; ++j) {
in_dims[j] = pten::vectorize<int64_t>(ins[j]->dims());
}
}
InputDimensionsExtend(N, axis);
auto merge_sequential_dims = [](bool &equal,
std::vector<DimVector> &in_dims,
DimVector &out,
int i,
int num) {
for (int j = 1; j < num; ++j) {
equal &= (in_dims[0][i] == in_dims[j][i]) ? true : false;
}
};
auto merge_sequential_one_dims = [](bool &equal,
std::vector<DimVector> &in_dims,
DimVector &out,
int i,
int num) {
equal = in_dims[0][i] == 1;
if (equal) {
for (int j = 1; j < num; ++j) {
equal &= in_dims[j][i] == out[i];
}
}
};
// To Merge the dimensions of input_tensors while the consequtive
// equal-dimensions appears.
MergeFunctor merge_ptr = merge_sequential_dims;
MergeDimensions<MergeFunctor>(merge_ptr, N);
int min_idx = 0;
int min_val = std::accumulate(
in_dims[0].begin(), in_dims[0].end(), 1, std::multiplies<int64_t>());
for (int j = 1; j < N; ++j) {
int temp = std::accumulate(
in_dims[j].begin(), in_dims[j].end(), 1, std::multiplies<int64_t>());
min_val = min_val > temp ? temp : min_val;
min_idx = min_val == temp ? j : min_idx;
}
std::swap(in_dims[0], in_dims[min_idx]);
// To Merge the dimension of input_tensors while the consequtive
// 1-value-dimensions appears.
merge_ptr = merge_sequential_one_dims;
MergeDimensions<MergeFunctor>(merge_ptr, N);
std::swap(in_dims[min_idx], in_dims[0]);
}
};
template <typename T, int VecSize, int Rank, bool IsBoundary = false>
__device__ __forceinline__ void LoadData(
T *dst,
const _ptr_ T *src,
uint32_t block_offset,
const kps::details::BroadcastConfig<Rank> &config,
int numel,
int num,
int need_broadcast) {
// numel : whole num of output
// num: how many data will be deal with in this time
if (need_broadcast) {
kps::ReadDataBc<T, VecSize, 1, 1, Rank, IsBoundary>(
dst, src, block_offset, config, numel);
} else {
kps::ReadData<T, VecSize, 1, 1, IsBoundary>(dst, src + block_offset, num);
}
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
int Rank,
bool IsBoundary = false>
__device__ void ElementwiseBroadcastKernelImpl(
const pten::Array<const _ptr_ InT *__restrict__, Arity> &ins,
pten::Array<_ptr_ OutT *, NumOuts> outs,
const pten::Array<int, Arity> &use_broadcast,
uint32_t numel,
const pten::Array<kps::details::BroadcastConfig<Rank>, Arity> &configs,
int num,
int block_offset,
Functor func) {
InT args[Arity][VecSize];
ConditionalT<OutT, NumOuts> result[VecSize];
#pragma unroll
for (int i = 0; i < Arity; i++) {
kps::Init<InT, VecSize>(args[i], static_cast<InT>(1.0f));
LoadData<InT, VecSize, Rank, IsBoundary>(args[i],
ins[i],
block_offset,
configs[i],
numel,
num,
use_broadcast[i]);
}
constexpr bool kCallElementwiseAny =
paddle::platform::FunctionTraits<Functor>::has_pointer_args;
pten::funcs::ElementwisePrimitiveCaller<InT,
ConditionalT<OutT, NumOuts>,
VecSize,
Functor,
Arity,
kCallElementwiseAny>()(
func, args, result);
pten::funcs::ElementwiseWriteDataCaller<OutT, VecSize, IsBoundary, NumOuts>()(
outs, result, block_offset, num);
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
int Rank>
__global__ void ElementwiseBroadcastKernel(
pten::Array<const _ptr_ InT *__restrict__, Arity> ins,
pten::Array<_ptr_ OutT *, NumOuts> outs,
pten::Array<int, Arity> use_broadcast,
uint32_t numel,
pten::Array<kps::details::BroadcastConfig<Rank>, Arity> configs,
int main_offset,
int tail_tid,
Functor func) {
int block_offset = BLOCK_ID_X * BLOCK_NUM_X * VecSize;
int stride = BLOCK_NUM_X * GRID_NUM_X * VecSize;
#ifdef PADDLE_WITH_XPU2
for (; block_offset < main_offset; block_offset += stride) {
ElementwiseBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
false>(ins,
outs,
use_broadcast,
numel,
configs,
BLOCK_NUM_X * VecSize,
block_offset,
func);
}
int num = numel - block_offset;
if (num > 0) {
ElementwiseBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
true>(
ins, outs, use_broadcast, numel, configs, num, block_offset, func);
}
#else
if (block_offset < main_offset) {
ElementwiseBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
false>(ins,
outs,
use_broadcast,
numel,
configs,
BLOCK_NUM_X * VecSize,
block_offset,
func);
} else {
ElementwiseBroadcastKernelImpl<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank,
true>(
ins, outs, use_broadcast, numel, configs, tail_tid, block_offset, func);
}
#endif
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize,
int Rank>
void LaunchKernel(const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
Functor func,
DimensionsTransform merge_dims) {
int numel = (*outs)[0]->numel();
pten::Array<kps::details::BroadcastConfig<Rank>, Arity> configs;
pten::Array<int, Arity> use_broadcast;
pten::Array<const _ptr_ InT *__restrict__, Arity> ins_data;
pten::Array<_ptr_ OutT *, NumOuts> outs_data;
for (int i = 0; i < NumOuts; ++i) {
outs_data[i] = ctx.Alloc<OutT>((*outs)[i]);
}
for (int i = 0; i < Arity; i++) {
use_broadcast[i] = (ins[i]->numel() != numel);
ins_data[i] = (_ptr_ InT *)(ins[i]->data<InT>());
if (use_broadcast[i]) {
// get the broadcast config,
// if data shape is[m, n], then you should set data_dim = {n, m}
// eg: out's shape [3, 45, 1]. then out_dims = {1, 45, 3}
configs[i] = kps::details::BroadcastConfig<Rank>(
merge_dims.out_dims, merge_dims.in_dims[i], merge_dims.dim_size);
}
}
#ifdef PADDLE_WITH_XPU2
const int threads = 64;
const int blocks = 8;
int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
int tail_tid = numel % (VecSize * threads);
auto stream = ctx.x_context()->xpu_stream;
ElementwiseBroadcastKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank><<<blocks, threads, stream>>>(ins_data,
outs_data,
use_broadcast,
numel,
configs,
main_offset,
tail_tid,
func);
#else
const int threads = 256;
int blocks = ((numel + VecSize - 1) / VecSize + threads - 1) / threads;
int main_offset = (numel / (VecSize * threads)) * VecSize * threads;
int tail_tid = numel % (VecSize * threads);
auto stream = ctx.stream();
ElementwiseBroadcastKernel<InT,
OutT,
Functor,
Arity,
NumOuts,
VecSize,
Rank><<<blocks, threads, 0, stream>>>(
ins_data,
outs_data,
use_broadcast,
numel,
configs,
main_offset,
tail_tid,
func);
#endif
}
template <typename InT,
typename OutT,
typename Functor,
int Arity,
int NumOuts,
int VecSize>
void LaunchBroadcastKernelForDifferentVecSize(
const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
const auto merge_dims = DimensionsTransform(ins, (*outs)[0]->dims(), axis);
#define CALL_BROADCAST_FOR_DIM_SIZE(rank) \
case rank: { \
LaunchKernel<InT, OutT, Functor, Arity, NumOuts, VecSize, rank>( \
ctx, ins, outs, func, merge_dims); \
} break;
switch (merge_dims.dim_size) {
CALL_BROADCAST_FOR_DIM_SIZE(1);
CALL_BROADCAST_FOR_DIM_SIZE(2);
CALL_BROADCAST_FOR_DIM_SIZE(3);
CALL_BROADCAST_FOR_DIM_SIZE(4);
CALL_BROADCAST_FOR_DIM_SIZE(5);
CALL_BROADCAST_FOR_DIM_SIZE(6);
CALL_BROADCAST_FOR_DIM_SIZE(7);
CALL_BROADCAST_FOR_DIM_SIZE(8);
default: {
PADDLE_THROW(paddle::platform::errors::InvalidArgument(
"The maximum dimension of input tensor is expected to be less than "
"%d, but recieved %d.\n",
merge_dims.dim_size,
pten::DDim::kMaxRank));
}
}
#undef CALL_BROADCAST_FOR_DIM_SIZE
}
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchBroadcastElementwiseCudaKernel(
const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
using Traits = paddle::platform::FunctionTraits<Functor>;
const int kArity =
Traits::has_pointer_args ? static_cast<int>(ET) : Traits::arity;
PADDLE_ENFORCE_EQ(ins.size(),
kArity,
paddle::platform::errors::InvalidArgument(
"The number of inputs is expected to be equal to the "
"arity of functor. But recieved: the number of inputs "
"is %d, the arity of functor is %d.",
ins.size(),
kArity));
PADDLE_ENFORCE_LE(kArity,
3,
paddle::platform::errors::InvalidArgument(
"Currently only broadcast of ternary is supported "
"and verified, but received %d.",
kArity));
PADDLE_ENFORCE_EQ(outs->size(),
NumOuts,
paddle::platform::errors::InvalidArgument(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d.",
outs->size(),
NumOuts));
int in_vec_size = 4;
int out_vec_size = 4;
if (NumOuts > 1) {
for (int i = 0; i < NumOuts; ++i) {
PADDLE_ENFORCE_EQ(
(*outs)[i]->dims(),
(*outs)[0]->dims(),
paddle::platform::errors::InvalidArgument(
"The shape of each output tensor shall be identical yet, but "
"%dth output tensor`s shape is not.",
i));
out_vec_size = std::min(
paddle::platform::GetVectorizedSize<OutT>((*outs)[i]->data<OutT>()),
out_vec_size);
}
} else {
out_vec_size =
paddle::platform::GetVectorizedSize<OutT>((*outs)[0]->data<OutT>());
}
for (auto *in : ins) {
auto temp_size = paddle::platform::GetVectorizedSize<InT>(in->data<InT>());
in_vec_size = in->dims() == (*outs)[0]->dims()
? std::min(temp_size, in_vec_size)
: in_vec_size;
}
int vec_size = std::min(out_vec_size, in_vec_size);
switch (vec_size) {
case 4: {
LaunchBroadcastKernelForDifferentVecSize<InT,
OutT,
Functor,
kArity,
NumOuts,
4>(ctx, ins, outs, axis, func);
break;
}
case 2: {
LaunchBroadcastKernelForDifferentVecSize<InT,
OutT,
Functor,
kArity,
NumOuts,
2>(ctx, ins, outs, axis, func);
break;
}
case 1: {
LaunchBroadcastKernelForDifferentVecSize<InT,
OutT,
Functor,
kArity,
NumOuts,
1>(ctx, ins, outs, axis, func);
break;
}
default: {
PADDLE_THROW(paddle::platform::errors::Unimplemented(
"Unsupported vectorized size: %d !", vec_size));
break;
}
}
}
template <ElementwiseType ET,
typename InT,
typename OutT,
typename Functor,
int NumOuts = 1>
void LaunchElementwiseCudaKernel(const KPDevice &ctx,
const std::vector<const DenseTensor *> &ins,
std::vector<DenseTensor *> *outs,
int axis,
Functor func) {
std::vector<int> dims_size;
bool no_broadcast_flag = true;
for (auto *in : ins) {
no_broadcast_flag &= ins[0]->dims() == in->dims();
dims_size.emplace_back(in->dims().size());
}
if (no_broadcast_flag) {
pten::funcs::LaunchSameDimsElementwiseCudaKernel<OutT, Functor, NumOuts>(
ctx, ins, outs, func);
} else {
axis = axis == -1
? *std::max_element(dims_size.begin(), dims_size.end()) -
*std::min_element(dims_size.begin(), dims_size.end())
: axis;
pten::LaunchBroadcastElementwiseCudaKernel<ET, InT, OutT, Functor, NumOuts>(
ctx, ins, outs, axis, func);
}
}
// General binary elementwise comutaion with the support of broadcast.
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const GPUContext &dev_ctx,
const DenseTensor &x,
......@@ -595,12 +47,10 @@ void ElementwiseCompute(const GPUContext &dev_ctx,
std::vector<const DenseTensor *> ins = {&x, &y};
std::vector<DenseTensor *> outs = {z};
z->mutable_data<OutType>(dev_ctx.GetPlace());
pten::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, OutType>(
pten::funcs::BroadcastKernel<ElementwiseType::kBinary, T, OutType>(
dev_ctx, ins, &outs, axis, func);
}
// BACKWARD CODE
// Suppose only has contiguous dims
static inline bool CheckContiguousDims(const std::vector<int> &broadcast_pos) {
for (int i = 1; i < broadcast_pos.size(); ++i) {
......
......@@ -49,7 +49,7 @@ void FullKernel(const Context& dev_ctx,
// This function has no input, so the inputs.size() == 0. Use kUnary, but
// the data will not be loaded in the kernel because the number of
// parameters in the operator is 0
pten::funcs::LaunchSameDimsElementwiseCudaKernel<T>(
pten::funcs::ElementwiseKernel<T>(
dev_ctx, inputs, &outputs, FullFuctor<T>(val.to<T>()));
}
}
......@@ -91,7 +91,7 @@ void FullLikeKernel(const Context& dev_ctx,
// the operator is 0
int numel = out->numel();
if (numel > 0) {
pten::funcs::LaunchSameDimsElementwiseCudaKernel<T>(
pten::funcs::ElementwiseKernel<T>(
dev_ctx, inputs, &outputs, FullFuctor<T>(value));
}
}
......
......@@ -48,7 +48,7 @@ namespace pten {
inputs.emplace_back(&y); \
outputs.emplace_back(out); \
dev_ctx.template Alloc<T>(out); \
LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>( \
funcs::BroadcastKernel<ElementwiseType::kBinary, T, T>( \
dev_ctx, inputs, &outputs, axis, funcs::name##Functor<T>()); \
}
......
......@@ -1091,8 +1091,7 @@ void TensorReduceImpl(const pten::GPUContext& dev_ctx,
if (config.reduce_num == 1) {
std::vector<const DenseTensor*> inputs = {&x};
std::vector<DenseTensor*> outputs = {y};
funcs::LaunchSameDimsElementwiseCudaKernel<Ty>(
dev_ctx, inputs, &outputs, transform);
funcs::ElementwiseKernel<Ty>(dev_ctx, inputs, &outputs, transform);
return;
}
......
......@@ -22,8 +22,10 @@
#include <numeric>
#include <set>
#include <vector>
#include "paddle/pten/kernels/gpu/elementwise.h"
#include "paddle/pten/kernels/funcs/broadcast_function.h"
namespace pten {
template <typename InT, typename Functor>
void ReduceGrad(const GPUContext& dev_ctx,
DenseTensor* d_out,
......@@ -33,12 +35,11 @@ void ReduceGrad(const GPUContext& dev_ctx,
std::vector<const DenseTensor*> inputs = {d_out};
std::vector<DenseTensor*> outputs = {d_x};
PD_VISIT_ALL_TYPES(
out_dtype, "LaunchBroadcastElementwiseCudaKernel", ([&] {
LaunchBroadcastElementwiseCudaKernel<pten::ElementwiseType::kUnary,
InT,
data_t>(
out_dtype, "BroadcastKernel", ([&] {
funcs::BroadcastKernel<pten::ElementwiseType::kUnary, InT, data_t>(
dev_ctx, inputs, &outputs, 0, functor);
}));
}
} // namespace pten
#endif
......@@ -54,7 +54,7 @@ void ScaleKernel(const Context& dev_ctx,
inputs.emplace_back(&x);
outputs.emplace_back(out);
dev_ctx.template Alloc<T>(out);
pten::funcs::LaunchSameDimsElementwiseCudaKernel<T>(
pten::funcs::ElementwiseKernel<T>(
dev_ctx,
inputs,
&outputs,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册