/* * File : dm9000a.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2009, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2009-07-01 Bernard the first version */ #include #include "dm9000a.h" #include #include "lwipopts.h" #include "stm32f10x.h" #include "stm32f10x_fsmc.h" // #define DM9000_DEBUG 1 #if DM9000_DEBUG #define DM9000_TRACE rt_kprintf #else #define DM9000_TRACE(...) #endif /* * DM9000 interrupt line is connected to PF7 */ //-------------------------------------------------------- #define DM9000_PHY 0x40 /* PHY address 0x01 */ #define RST_1() GPIO_SetBits(GPIOF,GPIO_Pin_6) #define RST_0() GPIO_ResetBits(GPIOF,GPIO_Pin_6) #define MAX_ADDR_LEN 6 enum DM9000_PHY_mode { DM9000_10MHD = 0, DM9000_100MHD = 1, DM9000_10MFD = 4, DM9000_100MFD = 5, DM9000_AUTO = 8, DM9000_1M_HPNA = 0x10 }; enum DM9000_TYPE { TYPE_DM9000E, TYPE_DM9000A, TYPE_DM9000B }; struct rt_dm9000_eth { /* inherit from ethernet device */ struct eth_device parent; enum DM9000_TYPE type; enum DM9000_PHY_mode mode; rt_uint8_t imr_all; rt_uint8_t packet_cnt; /* packet I or II */ rt_uint16_t queue_packet_len; /* queued packet (packet II) */ /* interface address info. */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */ }; static struct rt_dm9000_eth dm9000_device; static struct rt_semaphore sem_ack, sem_lock; void rt_dm9000_isr(void); static void delay_ms(rt_uint32_t ms) { rt_uint32_t len; for (;ms > 0; ms --) for (len = 0; len < 100; len++ ); } /* Read a byte from I/O port */ rt_inline rt_uint8_t dm9000_io_read(rt_uint16_t reg) { DM9000_IO = reg; return (rt_uint8_t) DM9000_DATA; } /* Write a byte to I/O port */ rt_inline void dm9000_io_write(rt_uint16_t reg, rt_uint16_t value) { DM9000_IO = reg; DM9000_DATA = value; } /* Read a word from phyxcer */ rt_inline rt_uint16_t phy_read(rt_uint16_t reg) { rt_uint16_t val; /* Fill the phyxcer register into REG_0C */ dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg); dm9000_io_write(DM9000_EPCR, 0xc); /* Issue phyxcer read command */ delay_ms(100); /* Wait read complete */ dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer read command */ val = (dm9000_io_read(DM9000_EPDRH) << 8) | dm9000_io_read(DM9000_EPDRL); return val; } /* Write a word to phyxcer */ rt_inline void phy_write(rt_uint16_t reg, rt_uint16_t value) { /* Fill the phyxcer register into REG_0C */ dm9000_io_write(DM9000_EPAR, DM9000_PHY | reg); /* Fill the written data into REG_0D & REG_0E */ dm9000_io_write(DM9000_EPDRL, (value & 0xff)); dm9000_io_write(DM9000_EPDRH, ((value >> 8) & 0xff)); dm9000_io_write(DM9000_EPCR, 0xa); /* Issue phyxcer write command */ delay_ms(500); /* Wait write complete */ dm9000_io_write(DM9000_EPCR, 0x0); /* Clear phyxcer write command */ } /* Set PHY operationg mode */ rt_inline void phy_mode_set(rt_uint32_t media_mode) { rt_uint16_t phy_reg4 = 0x01e1, phy_reg0 = 0x1000; if (!(media_mode & DM9000_AUTO)) { switch (media_mode) { case DM9000_10MHD: phy_reg4 = 0x21; phy_reg0 = 0x0000; break; case DM9000_10MFD: phy_reg4 = 0x41; phy_reg0 = 0x1100; break; case DM9000_100MHD: phy_reg4 = 0x81; phy_reg0 = 0x2000; break; case DM9000_100MFD: phy_reg4 = 0x101; phy_reg0 = 0x3100; break; } phy_write(4, phy_reg4); /* Set PHY media mode */ phy_write(0, phy_reg0); /* Tmp */ } dm9000_io_write(DM9000_GPCR, 0x01); /* Let GPIO0 output */ dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */ } /* interrupt service routine */ void rt_dm9000_isr() { rt_uint16_t int_status; rt_uint16_t last_io; last_io = DM9000_IO; /* Disable all interrupts */ dm9000_io_write(DM9000_IMR, IMR_PAR); /* Got DM9000 interrupt status */ int_status = dm9000_io_read(DM9000_ISR); /* Got ISR */ dm9000_io_write(DM9000_ISR, int_status); /* Clear ISR status */ DM9000_TRACE("dm9000 isr: int status %04x\n", int_status); /* receive overflow */ if (int_status & ISR_ROS) { rt_kprintf("overflow\n"); } if (int_status & ISR_ROOS) { rt_kprintf("overflow counter overflow\n"); } /* Received the coming packet */ if (int_status & ISR_PRS) { /* disable receive interrupt */ dm9000_device.imr_all = IMR_PAR | IMR_PTM; /* a frame has been received */ eth_device_ready(&(dm9000_device.parent)); } /* Transmit Interrupt check */ if (int_status & ISR_PTS) { /* transmit done */ int tx_status = dm9000_io_read(DM9000_NSR); /* Got TX status */ if (tx_status & (NSR_TX2END | NSR_TX1END)) { dm9000_device.packet_cnt --; if (dm9000_device.packet_cnt > 0) { DM9000_TRACE("dm9000 isr: tx second packet\n"); /* transmit packet II */ /* Set TX length to DM9000 */ dm9000_io_write(DM9000_TXPLL, dm9000_device.queue_packet_len & 0xff); dm9000_io_write(DM9000_TXPLH, (dm9000_device.queue_packet_len >> 8) & 0xff); /* Issue TX polling command */ dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ } /* One packet sent complete */ rt_sem_release(&sem_ack); } } /* Re-enable interrupt mask */ dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); DM9000_IO = last_io; } /* RT-Thread Device Interface */ /* initialize the interface */ static rt_err_t rt_dm9000_init(rt_device_t dev) { int i, oft, lnk; rt_uint32_t value; /* RESET device */ dm9000_io_write(DM9000_NCR, NCR_RST); delay_ms(1000); /* delay 1ms */ /* identfy DM9000 */ value = dm9000_io_read(DM9000_VIDL); value |= dm9000_io_read(DM9000_VIDH) << 8; value |= dm9000_io_read(DM9000_PIDL) << 16; value |= dm9000_io_read(DM9000_PIDH) << 24; if (value == DM9000_ID) { rt_kprintf("dm9000 id: 0x%x\n", value); } else { return -RT_ERROR; } /* GPIO0 on pre-activate PHY */ dm9000_io_write(DM9000_GPR, 0x00); /* REG_1F bit0 activate phyxcer */ dm9000_io_write(DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ dm9000_io_write(DM9000_GPR, 0x00); /* Enable PHY */ /* Set PHY */ phy_mode_set(dm9000_device.mode); /* Program operating register */ dm9000_io_write(DM9000_NCR, 0x0); /* only intern phy supported by now */ dm9000_io_write(DM9000_TCR, 0); /* TX Polling clear */ dm9000_io_write(DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ dm9000_io_write(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* Flow Control : High/Low Water */ dm9000_io_write(DM9000_FCR, 0x0); /* SH FIXME: This looks strange! Flow Control */ dm9000_io_write(DM9000_SMCR, 0); /* Special Mode */ dm9000_io_write(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* clear TX status */ dm9000_io_write(DM9000_ISR, 0x0f); /* Clear interrupt status */ dm9000_io_write(DM9000_TCR2, 0x80); /* Switch LED to mode 1 */ /* set mac address */ for (i = 0, oft = 0x10; i < 6; i++, oft++) dm9000_io_write(oft, dm9000_device.dev_addr[i]); /* set multicast address */ for (i = 0, oft = 0x16; i < 8; i++, oft++) dm9000_io_write(oft, 0xff); /* Activate DM9000 */ dm9000_io_write(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* RX enable */ dm9000_io_write(DM9000_IMR, IMR_PAR); if (dm9000_device.mode == DM9000_AUTO) { while (!(phy_read(1) & 0x20)) { /* autonegation complete bit */ rt_thread_delay(10); i++; if (i == 10000) { rt_kprintf("could not establish link\n"); return 0; } } } /* see what we've got */ lnk = phy_read(17) >> 12; rt_kprintf("operating at "); switch (lnk) { case 1: rt_kprintf("10M half duplex "); break; case 2: rt_kprintf("10M full duplex "); break; case 4: rt_kprintf("100M half duplex "); break; case 8: rt_kprintf("100M full duplex "); break; default: rt_kprintf("unknown: %d ", lnk); break; } rt_kprintf("mode\n"); dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* Enable TX/RX interrupt mask */ return RT_EOK; } static rt_err_t rt_dm9000_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t rt_dm9000_close(rt_device_t dev) { /* RESET devie */ phy_write(0, 0x8000); /* PHY RESET */ dm9000_io_write(DM9000_GPR, 0x01); /* Power-Down PHY */ dm9000_io_write(DM9000_IMR, 0x80); /* Disable all interrupt */ dm9000_io_write(DM9000_RCR, 0x00); /* Disable RX */ return RT_EOK; } static rt_size_t rt_dm9000_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_size_t rt_dm9000_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t rt_dm9000_control(rt_device_t dev, rt_uint8_t cmd, void *args) { switch (cmd) { case NIOCTL_GADDR: /* get mac address */ if (args) rt_memcpy(args, dm9000_device.dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* ethernet device interface */ /* transmit packet. */ rt_err_t rt_dm9000_tx( rt_device_t dev, struct pbuf* p) { DM9000_TRACE("dm9000 tx: %d\n", p->tot_len); /* lock DM9000 device */ rt_sem_take(&sem_lock, RT_WAITING_FOREVER); /* disable dm9000a interrupt */ dm9000_io_write(DM9000_IMR, IMR_PAR); /* Move data to DM9000 TX RAM */ DM9000_outb(DM9000_IO_BASE, DM9000_MWCMD); { /* q traverses through linked list of pbuf's * This list MUST consist of a single packet ONLY */ struct pbuf *q; rt_uint16_t pbuf_index = 0; rt_uint8_t word[2], word_index = 0; q = p; /* Write data into dm9000a, two bytes at a time * Handling pbuf's with odd number of bytes correctly * No attempt to optimize for speed has been made */ while (q) { if (pbuf_index < q->len) { word[word_index++] = ((u8_t*)q->payload)[pbuf_index++]; if (word_index == 2) { DM9000_outw(DM9000_DATA_BASE, (word[1] << 8) | word[0]); word_index = 0; } } else { q = q->next; pbuf_index = 0; } } /* One byte could still be unsent */ if (word_index == 1) { DM9000_outw(DM9000_DATA_BASE, word[0]); } } if (dm9000_device.packet_cnt == 0) { DM9000_TRACE("dm9000 tx: first packet\n"); dm9000_device.packet_cnt ++; /* Set TX length to DM9000 */ dm9000_io_write(DM9000_TXPLL, p->tot_len & 0xff); dm9000_io_write(DM9000_TXPLH, (p->tot_len >> 8) & 0xff); /* Issue TX polling command */ dm9000_io_write(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ } else { DM9000_TRACE("dm9000 tx: second packet\n"); dm9000_device.packet_cnt ++; dm9000_device.queue_packet_len = p->tot_len; } /* enable dm9000a interrupt */ dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); /* unlock DM9000 device */ rt_sem_release(&sem_lock); /* wait ack */ rt_sem_take(&sem_ack, RT_WAITING_FOREVER); DM9000_TRACE("dm9000 tx done\n"); return RT_EOK; } /* reception packet. */ struct pbuf *rt_dm9000_rx(rt_device_t dev) { struct pbuf* p; rt_uint32_t rxbyte; /* init p pointer */ p = RT_NULL; /* lock DM9000 device */ rt_sem_take(&sem_lock, RT_WAITING_FOREVER); /* Check packet ready or not */ dm9000_io_read(DM9000_MRCMDX); /* Dummy read */ rxbyte = DM9000_inb(DM9000_DATA_BASE); /* Got most updated data */ if (rxbyte) { rt_uint16_t rx_status, rx_len; rt_uint16_t* data; if (rxbyte > 1) { DM9000_TRACE("dm9000 rx: rx error, stop device\n"); dm9000_io_write(DM9000_RCR, 0x00); /* Stop Device */ dm9000_io_write(DM9000_ISR, 0x80); /* Stop INT request */ } /* A packet ready now & Get status/length */ DM9000_outb(DM9000_IO_BASE, DM9000_MRCMD); rx_status = DM9000_inw(DM9000_DATA_BASE); rx_len = DM9000_inw(DM9000_DATA_BASE); DM9000_TRACE("dm9000 rx: status %04x len %d\n", rx_status, rx_len); /* allocate buffer */ p = pbuf_alloc(PBUF_LINK, rx_len, PBUF_RAM); if (p != RT_NULL) { struct pbuf* q; rt_int32_t len; for (q = p; q != RT_NULL; q= q->next) { data = (rt_uint16_t*)q->payload; len = q->len; while (len > 0) { *data = DM9000_inw(DM9000_DATA_BASE); data ++; len -= 2; } } DM9000_TRACE("\n"); } else { rt_uint16_t dummy; DM9000_TRACE("dm9000 rx: no pbuf\n"); /* no pbuf, discard data from DM9000 */ data = &dummy; while (rx_len) { *data = DM9000_inw(DM9000_DATA_BASE); rx_len -= 2; } } if ((rx_status & 0xbf00) || (rx_len < 0x40) || (rx_len > DM9000_PKT_MAX)) { rt_kprintf("rx error: status %04x\n", rx_status); if (rx_status & 0x100) { rt_kprintf("rx fifo error\n"); } if (rx_status & 0x200) { rt_kprintf("rx crc error\n"); } if (rx_status & 0x8000) { rt_kprintf("rx length error\n"); } if (rx_len > DM9000_PKT_MAX) { rt_kprintf("rx length too big\n"); /* RESET device */ dm9000_io_write(DM9000_NCR, NCR_RST); rt_thread_delay(1); /* delay 5ms */ } /* it issues an error, release pbuf */ pbuf_free(p); p = RT_NULL; } } else { /* restore receive interrupt */ dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM; dm9000_io_write(DM9000_IMR, dm9000_device.imr_all); } /* unlock DM9000 device */ rt_sem_release(&sem_lock); return p; } static void RCC_Configuration(void) { /* enable gpiob port clock */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF | RCC_APB2Periph_AFIO, ENABLE); /* enable FSMC clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE); } static void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; /* Configure one bit for preemption priority */ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); /* Enable the EXTI0 Interrupt */ NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } static void GPIO_Configuration() { GPIO_InitTypeDef GPIO_InitStructure; EXTI_InitTypeDef EXTI_InitStructure; /* configure PF6 as eth RST */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOF,&GPIO_InitStructure); GPIO_ResetBits(GPIOF,GPIO_Pin_6); RST_1(); /* configure PF7 as external interrupt */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; GPIO_Init(GPIOF, &GPIO_InitStructure); /* Connect DM9000 EXTI Line to GPIOF Pin 7 */ GPIO_EXTILineConfig(GPIO_PortSourceGPIOF, GPIO_PinSource7); /* Configure DM9000 EXTI Line to generate an interrupt on falling edge */ EXTI_InitStructure.EXTI_Line = EXTI_Line7; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); /* Clear the Key Button EXTI line pending bit */ EXTI_ClearITPendingBit(EXTI_Line7); } static void FSMC_Configuration() { FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure; FSMC_NORSRAMTimingInitTypeDef p; GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOF, ENABLE); /*-- GPIO Configuration ------------------------------------------------------*/ /* SRAM Data lines configuration */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOD, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_Init(GPIOE, &GPIO_InitStructure); /* SRAM Address lines configuration */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_Init(GPIOF, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5; GPIO_Init(GPIOG, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13; GPIO_Init(GPIOD, &GPIO_InitStructure); /* NOE and NWE configuration */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5; GPIO_Init(GPIOD, &GPIO_InitStructure); /* NE3 NE4 configuration */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_12; GPIO_Init(GPIOG, &GPIO_InitStructure); /* NBL0, NBL1 configuration */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1; GPIO_Init(GPIOE, &GPIO_InitStructure); /*-- FSMC Configuration ------------------------------------------------------*/ p.FSMC_AddressSetupTime = 0; p.FSMC_AddressHoldTime = 0; p.FSMC_DataSetupTime = 2; p.FSMC_BusTurnAroundDuration = 0; p.FSMC_CLKDivision = 0; p.FSMC_DataLatency = 0; p.FSMC_AccessMode = FSMC_AccessMode_A; FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM4; FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable; FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM; FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b; FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable; FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low; FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable; FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState; FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable; FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable; FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable; FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable; FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p; FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p; FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure); /* Enable FSMC Bank1_SRAM Bank4 */ FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM4, ENABLE); } void rt_hw_dm9000_init() { RCC_Configuration(); NVIC_Configuration(); GPIO_Configuration(); FSMC_Configuration(); rt_sem_init(&sem_ack, "tx_ack", 1, RT_IPC_FLAG_FIFO); rt_sem_init(&sem_lock, "eth_lock", 1, RT_IPC_FLAG_FIFO); dm9000_device.type = TYPE_DM9000A; dm9000_device.mode = DM9000_AUTO; dm9000_device.packet_cnt = 0; dm9000_device.queue_packet_len = 0; /* * SRAM Tx/Rx pointer automatically return to start address, * Packet Transmitted, Packet Received */ dm9000_device.imr_all = IMR_PAR | IMR_PTM | IMR_PRM; dm9000_device.dev_addr[0] = 0x01; dm9000_device.dev_addr[1] = 0x60; dm9000_device.dev_addr[2] = 0x6E; dm9000_device.dev_addr[3] = 0x11; dm9000_device.dev_addr[4] = 0x02; dm9000_device.dev_addr[5] = 0x0F; dm9000_device.parent.parent.init = rt_dm9000_init; dm9000_device.parent.parent.open = rt_dm9000_open; dm9000_device.parent.parent.close = rt_dm9000_close; dm9000_device.parent.parent.read = rt_dm9000_read; dm9000_device.parent.parent.write = rt_dm9000_write; dm9000_device.parent.parent.control = rt_dm9000_control; dm9000_device.parent.parent.private = RT_NULL; dm9000_device.parent.eth_rx = rt_dm9000_rx; dm9000_device.parent.eth_tx = rt_dm9000_tx; eth_device_init(&(dm9000_device.parent), "e0"); } void dm9000(void) { rt_kprintf("\n"); rt_kprintf("NCR (0x00): %02x\n", dm9000_io_read(DM9000_NCR)); rt_kprintf("NSR (0x01): %02x\n", dm9000_io_read(DM9000_NSR)); rt_kprintf("TCR (0x02): %02x\n", dm9000_io_read(DM9000_TCR)); rt_kprintf("TSRI (0x03): %02x\n", dm9000_io_read(DM9000_TSR1)); rt_kprintf("TSRII (0x04): %02x\n", dm9000_io_read(DM9000_TSR2)); rt_kprintf("RCR (0x05): %02x\n", dm9000_io_read(DM9000_RCR)); rt_kprintf("RSR (0x06): %02x\n", dm9000_io_read(DM9000_RSR)); rt_kprintf("ORCR (0x07): %02x\n", dm9000_io_read(DM9000_ROCR)); rt_kprintf("CRR (0x2C): %02x\n", dm9000_io_read(DM9000_CHIPR)); rt_kprintf("CSCR (0x31): %02x\n", dm9000_io_read(DM9000_CSCR)); rt_kprintf("RCSSR (0x32): %02x\n", dm9000_io_read(DM9000_RCSSR)); rt_kprintf("ISR (0xFE): %02x\n", dm9000_io_read(DM9000_ISR)); rt_kprintf("IMR (0xFF): %02x\n", dm9000_io_read(DM9000_IMR)); rt_kprintf("\n"); } #ifdef RT_USING_FINSH #include FINSH_FUNCTION_EXPORT(dm9000, dm9000 register dump); #endif