# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """FasterRcnn dataset""" from __future__ import division import os import numpy as np from numpy import random import mmcv import mindspore.dataset as de import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.c_transforms as CC import mindspore.common.dtype as mstype from mindspore.mindrecord import FileWriter from src.config import config def bbox_overlaps(bboxes1, bboxes2, mode='iou'): """Calculate the ious between each bbox of bboxes1 and bboxes2. Args: bboxes1(ndarray): shape (n, 4) bboxes2(ndarray): shape (k, 4) mode(str): iou (intersection over union) or iof (intersection over foreground) Returns: ious(ndarray): shape (n, k) """ assert mode in ['iou', 'iof'] bboxes1 = bboxes1.astype(np.float32) bboxes2 = bboxes2.astype(np.float32) rows = bboxes1.shape[0] cols = bboxes2.shape[0] ious = np.zeros((rows, cols), dtype=np.float32) if rows * cols == 0: return ious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 ious = np.zeros((cols, rows), dtype=np.float32) exchange = True area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * (bboxes1[:, 3] - bboxes1[:, 1] + 1) area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * (bboxes2[:, 3] - bboxes2[:, 1] + 1) for i in range(bboxes1.shape[0]): x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0]) y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1]) x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2]) y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3]) overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum( y_end - y_start + 1, 0) if mode == 'iou': union = area1[i] + area2 - overlap else: union = area1[i] if not exchange else area2 ious[i, :] = overlap / union if exchange: ious = ious.T return ious class PhotoMetricDistortion: """Photo Metric Distortion""" def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def __call__(self, img, boxes, labels): # random brightness img = img.astype('float32') if random.randint(2): delta = random.uniform(-self.brightness_delta, self.brightness_delta) img += delta # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # convert color from BGR to HSV img = mmcv.bgr2hsv(img) # random saturation if random.randint(2): img[..., 1] *= random.uniform(self.saturation_lower, self.saturation_upper) # random hue if random.randint(2): img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) img[..., 0][img[..., 0] > 360] -= 360 img[..., 0][img[..., 0] < 0] += 360 # convert color from HSV to BGR img = mmcv.hsv2bgr(img) # random contrast if mode == 0: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # randomly swap channels if random.randint(2): img = img[..., random.permutation(3)] return img, boxes, labels class Expand: """expand image""" def __init__(self, mean=(0, 0, 0), to_rgb=True, ratio_range=(1, 4)): if to_rgb: self.mean = mean[::-1] else: self.mean = mean self.min_ratio, self.max_ratio = ratio_range def __call__(self, img, boxes, labels): if random.randint(2): return img, boxes, labels h, w, c = img.shape ratio = random.uniform(self.min_ratio, self.max_ratio) expand_img = np.full((int(h * ratio), int(w * ratio), c), self.mean).astype(img.dtype) left = int(random.uniform(0, w * ratio - w)) top = int(random.uniform(0, h * ratio - h)) expand_img[top:top + h, left:left + w] = img img = expand_img boxes += np.tile((left, top), 2) return img, boxes, labels def rescale_column(img, img_shape, gt_bboxes, gt_label, gt_num): """rescale operation for image""" img_data, scale_factor = mmcv.imrescale(img, (config.img_width, config.img_height), return_scale=True) if img_data.shape[0] > config.img_height: img_data, scale_factor2 = mmcv.imrescale(img_data, (config.img_height, config.img_width), return_scale=True) scale_factor = scale_factor*scale_factor2 img_shape = np.append(img_shape, scale_factor) img_shape = np.asarray(img_shape, dtype=np.float32) gt_bboxes = gt_bboxes * scale_factor gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def resize_column(img, img_shape, gt_bboxes, gt_label, gt_num): """resize operation for image""" img_data = img img_data, w_scale, h_scale = mmcv.imresize( img_data, (config.img_width, config.img_height), return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = (config.img_height, config.img_width, 1.0) img_shape = np.asarray(img_shape, dtype=np.float32) gt_bboxes = gt_bboxes * scale_factor gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def resize_column_test(img, img_shape, gt_bboxes, gt_label, gt_num): """resize operation for image of eval""" img_data = img img_data, w_scale, h_scale = mmcv.imresize( img_data, (config.img_width, config.img_height), return_scale=True) scale_factor = np.array( [w_scale, h_scale, w_scale, h_scale], dtype=np.float32) img_shape = np.append(img_shape, (h_scale, w_scale)) img_shape = np.asarray(img_shape, dtype=np.float32) gt_bboxes = gt_bboxes * scale_factor gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0, img_shape[1] - 1) gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0, img_shape[0] - 1) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def impad_to_multiple_column(img, img_shape, gt_bboxes, gt_label, gt_num): """impad operation for image""" img_data = mmcv.impad(img, (config.img_height, config.img_width)) img_data = img_data.astype(np.float32) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def imnormalize_column(img, img_shape, gt_bboxes, gt_label, gt_num): """imnormalize operation for image""" img_data = mmcv.imnormalize(img, [123.675, 116.28, 103.53], [58.395, 57.12, 57.375], True) img_data = img_data.astype(np.float32) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def flip_column(img, img_shape, gt_bboxes, gt_label, gt_num): """flip operation for image""" img_data = img img_data = mmcv.imflip(img_data) flipped = gt_bboxes.copy() _, w, _ = img_data.shape flipped[..., 0::4] = w - gt_bboxes[..., 2::4] - 1 flipped[..., 2::4] = w - gt_bboxes[..., 0::4] - 1 return (img_data, img_shape, flipped, gt_label, gt_num) def flipped_generation(img, img_shape, gt_bboxes, gt_label, gt_num): """flipped generation""" img_data = img flipped = gt_bboxes.copy() _, w, _ = img_data.shape flipped[..., 0::4] = w - gt_bboxes[..., 2::4] - 1 flipped[..., 2::4] = w - gt_bboxes[..., 0::4] - 1 return (img_data, img_shape, flipped, gt_label, gt_num) def image_bgr_rgb(img, img_shape, gt_bboxes, gt_label, gt_num): img_data = img[:, :, ::-1] return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def transpose_column(img, img_shape, gt_bboxes, gt_label, gt_num): """transpose operation for image""" img_data = img.transpose(2, 0, 1).copy() img_data = img_data.astype(np.float16) img_shape = img_shape.astype(np.float16) gt_bboxes = gt_bboxes.astype(np.float16) gt_label = gt_label.astype(np.int32) gt_num = gt_num.astype(np.bool) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def photo_crop_column(img, img_shape, gt_bboxes, gt_label, gt_num): """photo crop operation for image""" random_photo = PhotoMetricDistortion() img_data, gt_bboxes, gt_label = random_photo(img, gt_bboxes, gt_label) return (img_data, img_shape, gt_bboxes, gt_label, gt_num) def expand_column(img, img_shape, gt_bboxes, gt_label, gt_num): """expand operation for image""" expand = Expand() img, gt_bboxes, gt_label = expand(img, gt_bboxes, gt_label) return (img, img_shape, gt_bboxes, gt_label, gt_num) def preprocess_fn(image, box, is_training): """Preprocess function for dataset.""" def _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert): image_shape = image_shape[:2] input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert if config.keep_ratio: input_data = rescale_column(*input_data) else: input_data = resize_column_test(*input_data) input_data = image_bgr_rgb(*input_data) output_data = input_data return output_data def _data_aug(image, box, is_training): """Data augmentation function.""" image_bgr = image.copy() image_bgr[:, :, 0] = image[:, :, 2] image_bgr[:, :, 1] = image[:, :, 1] image_bgr[:, :, 2] = image[:, :, 0] image_shape = image_bgr.shape[:2] gt_box = box[:, :4] gt_label = box[:, 4] gt_iscrowd = box[:, 5] pad_max_number = 128 gt_box_new = np.pad(gt_box, ((0, pad_max_number - box.shape[0]), (0, 0)), mode="constant", constant_values=0) gt_label_new = np.pad(gt_label, ((0, pad_max_number - box.shape[0])), mode="constant", constant_values=-1) gt_iscrowd_new = np.pad(gt_iscrowd, ((0, pad_max_number - box.shape[0])), mode="constant", constant_values=1) gt_iscrowd_new_revert = (~(gt_iscrowd_new.astype(np.bool))).astype(np.int32) if not is_training: return _infer_data(image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert) input_data = image_bgr, image_shape, gt_box_new, gt_label_new, gt_iscrowd_new_revert expand = (np.random.rand() < config.expand_ratio) if expand: input_data = expand_column(*input_data) if config.keep_ratio: input_data = rescale_column(*input_data) else: input_data = resize_column(*input_data) photo = (np.random.rand() < config.photo_ratio) if photo: input_data = photo_crop_column(*input_data) input_data = image_bgr_rgb(*input_data) output_data = input_data return output_data return _data_aug(image, box, is_training) def create_coco_label(is_training): """Get image path and annotation from COCO.""" from pycocotools.coco import COCO coco_root = config.coco_root data_type = config.val_data_type if is_training: data_type = config.train_data_type #Classes need to train or test. train_cls = config.coco_classes train_cls_dict = {} for i, cls in enumerate(train_cls): train_cls_dict[cls] = i anno_json = os.path.join(coco_root, config.instance_set.format(data_type)) coco = COCO(anno_json) classs_dict = {} cat_ids = coco.loadCats(coco.getCatIds()) for cat in cat_ids: classs_dict[cat["id"]] = cat["name"] image_ids = coco.getImgIds() image_files = [] image_anno_dict = {} for img_id in image_ids: image_info = coco.loadImgs(img_id) file_name = image_info[0]["file_name"] anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None) anno = coco.loadAnns(anno_ids) image_path = os.path.join(coco_root, data_type, file_name) annos = [] for label in anno: bbox = label["bbox"] class_name = classs_dict[label["category_id"]] if class_name in train_cls: x1, x2 = bbox[0], bbox[0] + bbox[2] y1, y2 = bbox[1], bbox[1] + bbox[3] annos.append([x1, y1, x2, y2] + [train_cls_dict[class_name]] + [int(label["iscrowd"])]) image_files.append(image_path) if annos: image_anno_dict[image_path] = np.array(annos) else: image_anno_dict[image_path] = np.array([0, 0, 0, 0, 0, 1]) return image_files, image_anno_dict def anno_parser(annos_str): """Parse annotation from string to list.""" annos = [] for anno_str in annos_str: anno = list(map(int, anno_str.strip().split(','))) annos.append(anno) return annos def filter_valid_data(image_dir, anno_path): """Filter valid image file, which both in image_dir and anno_path.""" image_files = [] image_anno_dict = {} if not os.path.isdir(image_dir): raise RuntimeError("Path given is not valid.") if not os.path.isfile(anno_path): raise RuntimeError("Annotation file is not valid.") with open(anno_path, "rb") as f: lines = f.readlines() for line in lines: line_str = line.decode("utf-8").strip() line_split = str(line_str).split(' ') file_name = line_split[0] image_path = os.path.join(image_dir, file_name) if os.path.isfile(image_path): image_anno_dict[image_path] = anno_parser(line_split[1:]) image_files.append(image_path) return image_files, image_anno_dict def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="fasterrcnn.mindrecord", file_num=8): """Create MindRecord file.""" mindrecord_dir = config.mindrecord_dir mindrecord_path = os.path.join(mindrecord_dir, prefix) writer = FileWriter(mindrecord_path, file_num) if dataset == "coco": image_files, image_anno_dict = create_coco_label(is_training) else: image_files, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH) fasterrcnn_json = { "image": {"type": "bytes"}, "annotation": {"type": "int32", "shape": [-1, 6]}, } writer.add_schema(fasterrcnn_json, "fasterrcnn_json") for image_name in image_files: with open(image_name, 'rb') as f: img = f.read() annos = np.array(image_anno_dict[image_name], dtype=np.int32) row = {"image": img, "annotation": annos} writer.write_raw_data([row]) writer.commit() def create_fasterrcnn_dataset(mindrecord_file, batch_size=2, repeat_num=12, device_num=1, rank_id=0, is_training=True, num_parallel_workers=8): """Creatr FasterRcnn dataset with MindDataset.""" ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank_id, num_parallel_workers=num_parallel_workers, shuffle=is_training) decode = C.Decode() ds = ds.map(input_columns=["image"], operations=decode) compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training)) hwc_to_chw = C.HWC2CHW() normalize_op = C.Normalize((123.675, 116.28, 103.53), (58.395, 57.12, 57.375)) horizontally_op = C.RandomHorizontalFlip(1) type_cast0 = CC.TypeCast(mstype.float32) type_cast1 = CC.TypeCast(mstype.float16) type_cast2 = CC.TypeCast(mstype.int32) type_cast3 = CC.TypeCast(mstype.bool_) if is_training: ds = ds.map(input_columns=["image", "annotation"], output_columns=["image", "image_shape", "box", "label", "valid_num"], columns_order=["image", "image_shape", "box", "label", "valid_num"], operations=compose_map_func, num_parallel_workers=4) ds = ds.map(input_columns=["image"], operations=[normalize_op, type_cast0], num_parallel_workers=num_parallel_workers) flip = (np.random.rand() < config.flip_ratio) if flip: ds = ds.map(input_columns=["image"], operations=[horizontally_op], num_parallel_workers=num_parallel_workers) ds = ds.map(input_columns=["image", "image_shape", "box", "label", "valid_num"], operations=flipped_generation, num_parallel_workers=4) # transpose_column from python to c ds = ds.map(input_columns=["image"], operations=[hwc_to_chw, type_cast1]) ds = ds.map(input_columns=["image_shape"], operations=[type_cast1]) ds = ds.map(input_columns=["box"], operations=[type_cast1]) ds = ds.map(input_columns=["label"], operations=[type_cast2]) ds = ds.map(input_columns=["valid_num"], operations=[type_cast3]) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.repeat(repeat_num) else: ds = ds.map(input_columns=["image", "annotation"], output_columns=["image", "image_shape", "box", "label", "valid_num"], columns_order=["image", "image_shape", "box", "label", "valid_num"], operations=compose_map_func, num_parallel_workers=num_parallel_workers) # transpose_column from python to c ds = ds.map(input_columns=["image"], operations=[hwc_to_chw, type_cast1]) ds = ds.map(input_columns=["image_shape"], operations=[type_cast1]) ds = ds.map(input_columns=["box"], operations=[type_cast1]) ds = ds.map(input_columns=["label"], operations=[type_cast2]) ds = ds.map(input_columns=["valid_num"], operations=[type_cast3]) ds = ds.batch(batch_size, drop_remainder=True) ds = ds.repeat(repeat_num) return ds