# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """learning rate generator""" import numpy as np import math def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr): lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps) lr = float(init_lr) + lr_inc * current_step return lr def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch): """ generate learning rate array with cosine Args: lr(float): base learning rate steps_per_epoch(int): steps size of one epoch warmup_epochs(int): number of warmup epochs max_epoch(int): total epochs of training Returns: np.array, learning rate array """ base_lr = lr warmup_init_lr = 0 total_steps = int(max_epoch * steps_per_epoch) warmup_steps = int(warmup_epochs * steps_per_epoch) decay_steps = total_steps - warmup_steps lr_each_step = [] for i in range(total_steps): if i < warmup_steps: lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) else: linear_decay = (total_steps - i) / decay_steps cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps)) decayed = linear_decay * cosine_decay + 0.00001 lr = base_lr * decayed lr_each_step.append(lr) return np.array(lr_each_step).astype(np.float32) def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode): """ generate learning rate array Args: global_step(int): total steps of the training lr_init(float): init learning rate lr_end(float): end learning rate lr_max(float): max learning rate warmup_epochs(int): number of warmup epochs total_epochs(int): total epoch of training steps_per_epoch(int): steps of one epoch lr_decay_mode(string): learning rate decay mode, including steps, poly or default Returns: np.array, learning rate array """ lr_each_step = [] total_steps = steps_per_epoch * total_epochs warmup_steps = steps_per_epoch * warmup_epochs if lr_decay_mode == 'steps': decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps] for i in range(total_steps): if i < decay_epoch_index[0]: lr = lr_max elif i < decay_epoch_index[1]: lr = lr_max * 0.1 elif i < decay_epoch_index[2]: lr = lr_max * 0.01 else: lr = lr_max * 0.001 lr_each_step.append(lr) elif lr_decay_mode == 'poly': if warmup_steps != 0: inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps) else: inc_each_step = 0 for i in range(total_steps): if i < warmup_steps: lr = float(lr_init) + inc_each_step * float(i) else: base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps))) lr = float(lr_max) * base * base if lr < 0.0: lr = 0.0 lr_each_step.append(lr) else: for i in range(total_steps): if i < warmup_steps: lr = lr_init + (lr_max - lr_init) * i / warmup_steps else: lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps) lr_each_step.append(lr) current_step = global_step lr_each_step = np.array(lr_each_step).astype(np.float32) learning_rate = lr_each_step[current_step:] return learning_rate