# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ ''' Bert for finetune script. ''' import mindspore.nn as nn from mindspore.ops import operations as P from mindspore.ops import functional as F from mindspore.ops import composite as C from mindspore.common.tensor import Tensor from mindspore.common.parameter import Parameter, ParameterTuple from mindspore.common import dtype as mstype from mindspore.nn.wrap.grad_reducer import DistributedGradReducer from mindspore.train.parallel_utils import ParallelMode from mindspore.communication.management import get_group_size from mindspore import context from .bert_for_pre_training import clip_grad from .finetune_eval_model import BertCLSModel, BertNERModel, BertSquadModel from .utils import CrossEntropyCalculation GRADIENT_CLIP_TYPE = 1 GRADIENT_CLIP_VALUE = 1.0 grad_scale = C.MultitypeFuncGraph("grad_scale") reciprocal = P.Reciprocal() @grad_scale.register("Tensor", "Tensor") def tensor_grad_scale(scale, grad): return grad * reciprocal(scale) _grad_overflow = C.MultitypeFuncGraph("_grad_overflow") grad_overflow = P.FloatStatus() @_grad_overflow.register("Tensor") def _tensor_grad_overflow(grad): return grad_overflow(grad) class BertFinetuneCell(nn.Cell): """ Especifically defined for finetuning where only four inputs tensor are needed. """ def __init__(self, network, optimizer, scale_update_cell=None): super(BertFinetuneCell, self).__init__(auto_prefix=False) self.network = network self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.reducer_flag = False self.allreduce = P.AllReduce() self.parallel_mode = context.get_auto_parallel_context("parallel_mode") if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]: self.reducer_flag = True self.grad_reducer = None if self.reducer_flag: mean = context.get_auto_parallel_context("mirror_mean") degree = get_group_size() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE) self.cast = P.Cast() self.gpu_target = False if context.get_context("device_target") == "GPU": self.gpu_target = True self.float_status = P.FloatStatus() self.addn = P.AddN() self.reshape = P.Reshape() else: self.alloc_status = P.NPUAllocFloatStatus() self.get_status = P.NPUGetFloatStatus() self.clear_before_grad = P.NPUClearFloatStatus() self.reduce_sum = P.ReduceSum(keep_dims=False) self.depend_parameter_use = P.ControlDepend(depend_mode=1) self.base = Tensor(1, mstype.float32) self.less_equal = P.LessEqual() self.hyper_map = C.HyperMap() self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") def construct(self, input_ids, input_mask, token_type_id, label_ids, sens=None): weights = self.weights init = False loss = self.network(input_ids, input_mask, token_type_id, label_ids) if sens is None: scaling_sens = self.loss_scale else: scaling_sens = sens if not self.gpu_target: init = self.alloc_status() clear_before_grad = self.clear_before_grad(init) F.control_depend(loss, init) self.depend_parameter_use(clear_before_grad, scaling_sens) grads = self.grad(self.network, weights)(input_ids, input_mask, token_type_id, label_ids, self.cast(scaling_sens, mstype.float32)) grads = self.hyper_map(F.partial(grad_scale, scaling_sens), grads) grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads) if self.reducer_flag: grads = self.grad_reducer(grads) if not self.gpu_target: flag = self.get_status(init) flag_sum = self.reduce_sum(init, (0,)) F.control_depend(grads, flag) F.control_depend(flag, flag_sum) else: flag_sum = self.hyper_map(F.partial(_grad_overflow), grads) flag_sum = self.addn(flag_sum) flag_sum = self.reshape(flag_sum, (())) if self.is_distributed: flag_reduce = self.allreduce(flag_sum) cond = self.less_equal(self.base, flag_reduce) else: cond = self.less_equal(self.base, flag_sum) overflow = cond if sens is None: overflow = self.loss_scaling_manager(self.loss_scale, cond) if overflow: succ = False else: succ = self.optimizer(grads) ret = (loss, cond) return F.depend(ret, succ) class BertSquadCell(nn.Cell): """ specifically defined for finetuning where only four inputs tensor are needed. """ def __init__(self, network, optimizer, scale_update_cell=None): super(BertSquadCell, self).__init__(auto_prefix=False) self.network = network self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.reducer_flag = False self.allreduce = P.AllReduce() self.parallel_mode = context.get_auto_parallel_context("parallel_mode") if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]: self.reducer_flag = True self.grad_reducer = None if self.reducer_flag: mean = context.get_auto_parallel_context("mirror_mean") degree = get_group_size() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE) self.cast = P.Cast() self.alloc_status = P.NPUAllocFloatStatus() self.get_status = P.NPUGetFloatStatus() self.clear_before_grad = P.NPUClearFloatStatus() self.reduce_sum = P.ReduceSum(keep_dims=False) self.depend_parameter_use = P.ControlDepend(depend_mode=1) self.base = Tensor(1, mstype.float32) self.less_equal = P.LessEqual() self.hyper_map = C.HyperMap() self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") def construct(self, input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible, sens=None): weights = self.weights init = self.alloc_status() loss = self.network(input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible) if sens is None: scaling_sens = self.loss_scale else: scaling_sens = sens grads = self.grad(self.network, weights)(input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible, self.cast(scaling_sens, mstype.float32)) clear_before_grad = self.clear_before_grad(init) F.control_depend(loss, init) self.depend_parameter_use(clear_before_grad, scaling_sens) grads = self.hyper_map(F.partial(grad_scale, scaling_sens), grads) grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads) if self.reducer_flag: grads = self.grad_reducer(grads) flag = self.get_status(init) flag_sum = self.reduce_sum(init, (0,)) if self.is_distributed: flag_reduce = self.allreduce(flag_sum) cond = self.less_equal(self.base, flag_reduce) else: cond = self.less_equal(self.base, flag_sum) F.control_depend(grads, flag) F.control_depend(flag, flag_sum) overflow = cond if sens is None: overflow = self.loss_scaling_manager(self.loss_scale, cond) if overflow: succ = False else: succ = self.optimizer(grads) ret = (loss, cond) return F.depend(ret, succ) class BertCLS(nn.Cell): """ Train interface for classification finetuning task. """ def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False, assessment_method=""): super(BertCLS, self).__init__() self.bert = BertCLSModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings, assessment_method) self.loss = CrossEntropyCalculation(is_training) self.num_labels = num_labels self.assessment_method = assessment_method self.is_training = is_training def construct(self, input_ids, input_mask, token_type_id, label_ids): logits = self.bert(input_ids, input_mask, token_type_id) if self.assessment_method == "spearman_correlation": if self.is_training: loss = self.loss(logits, label_ids) else: loss = logits else: loss = self.loss(logits, label_ids, self.num_labels) return loss class BertNER(nn.Cell): """ Train interface for sequence labeling finetuning task. """ def __init__(self, config, is_training, num_labels=11, use_crf=False, tag_to_index=None, dropout_prob=0.0, use_one_hot_embeddings=False): super(BertNER, self).__init__() self.bert = BertNERModel(config, is_training, num_labels, use_crf, dropout_prob, use_one_hot_embeddings) if use_crf: if not tag_to_index: raise Exception("The dict for tag-index mapping should be provided for CRF.") from src.CRF import CRF self.loss = CRF(tag_to_index, config.batch_size, config.seq_length, is_training) else: self.loss = CrossEntropyCalculation(is_training) self.num_labels = num_labels self.use_crf = use_crf def construct(self, input_ids, input_mask, token_type_id, label_ids): logits = self.bert(input_ids, input_mask, token_type_id) if self.use_crf: loss = self.loss(logits, label_ids) else: loss = self.loss(logits, label_ids, self.num_labels) return loss class BertSquad(nn.Cell): ''' Train interface for SQuAD finetuning task. ''' def __init__(self, config, is_training, num_labels=2, dropout_prob=0.0, use_one_hot_embeddings=False): super(BertSquad, self).__init__() self.bert = BertSquadModel(config, is_training, num_labels, dropout_prob, use_one_hot_embeddings) self.loss = CrossEntropyCalculation(is_training) self.num_labels = num_labels self.seq_length = config.seq_length self.is_training = is_training self.total_num = Parameter(Tensor([0], mstype.float32), name='total_num') self.start_num = Parameter(Tensor([0], mstype.float32), name='start_num') self.end_num = Parameter(Tensor([0], mstype.float32), name='end_num') self.sum = P.ReduceSum() self.equal = P.Equal() self.argmax = P.ArgMaxWithValue(axis=1) self.squeeze = P.Squeeze(axis=-1) def construct(self, input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible): logits = self.bert(input_ids, input_mask, token_type_id) if self.is_training: unstacked_logits_0 = self.squeeze(logits[:, :, 0:1]) unstacked_logits_1 = self.squeeze(logits[:, :, 1:2]) start_loss = self.loss(unstacked_logits_0, start_position, self.seq_length) end_loss = self.loss(unstacked_logits_1, end_position, self.seq_length) total_loss = (start_loss + end_loss) / 2.0 else: start_logits = self.squeeze(logits[:, :, 0:1]) end_logits = self.squeeze(logits[:, :, 1:2]) total_loss = (unique_id, start_logits, end_logits) return total_loss