# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing the bounding box augment op in DE """ from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \ config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5 import numpy as np import mindspore.log as logger import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as c_vision GENERATE_GOLDEN = False # updated VOC dataset with correct annotations DATA_DIR = "../data/dataset/testVOC2012_2" DATA_DIR_2 = ["../data/dataset/testCOCO/train/", "../data/dataset/testCOCO/annotations/train.json"] # DATA_DIR, ANNOTATION_DIR def test_bounding_box_augment_with_rotation_op(plot_vis=False): """ Test BoundingBoxAugment op (passing rotation op as transform) Prints images side by side with and without Aug applied + bboxes to compare and test """ logger.info("test_bounding_box_augment_with_rotation_op") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) # Ratio is set to 1 to apply rotation on all bounding boxes. test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1) # map to apply ops dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], output_columns=["image", "annotation"], columns_order=["image", "annotation"], operations=[test_op]) filename = "bounding_box_augment_rotation_c_result.npz" save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN) unaugSamp, augSamp = [], [] for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()): unaugSamp.append(unAug) augSamp.append(Aug) if plot_vis: visualize_with_bounding_boxes(unaugSamp, augSamp) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_bounding_box_augment_with_crop_op(plot_vis=False): """ Test BoundingBoxAugment op (passing crop op as transform) Prints images side by side with and without Aug applied + bboxes to compare and test """ logger.info("test_bounding_box_augment_with_crop_op") original_seed = config_get_set_seed(0) original_num_parallel_workers = config_get_set_num_parallel_workers(1) dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) # Ratio is set to 1 to apply rotation on all bounding boxes. test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(50), 0.5) # map to apply ops dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], output_columns=["image", "annotation"], columns_order=["image", "annotation"], operations=[test_op]) filename = "bounding_box_augment_crop_c_result.npz" save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN) unaugSamp, augSamp = [], [] for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()): unaugSamp.append(unAug) augSamp.append(Aug) if plot_vis: visualize_with_bounding_boxes(unaugSamp, augSamp) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_bounding_box_augment_valid_ratio_c(plot_vis=False): """ Test BoundingBoxAugment op (testing with valid ratio, less than 1. Prints images side by side with and without Aug applied + bboxes to compare and test """ logger.info("test_bounding_box_augment_valid_ratio_c") original_seed = config_get_set_seed(1) original_num_parallel_workers = config_get_set_num_parallel_workers(1) dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9) # map to apply ops dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], output_columns=["image", "annotation"], columns_order=["image", "annotation"], operations=[test_op]) # Add column for "annotation" filename = "bounding_box_augment_valid_ratio_c_result.npz" save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN) unaugSamp, augSamp = [], [] for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()): unaugSamp.append(unAug) augSamp.append(Aug) if plot_vis: visualize_with_bounding_boxes(unaugSamp, augSamp) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_bounding_box_augment_op_coco_c(plot_vis=False): """ Prints images and bboxes side by side with and without BoundingBoxAugment Op applied, Testing with COCO dataset """ logger.info("test_bounding_box_augment_op_coco_c") dataCoco1 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection", decode=True, shuffle=False) dataCoco2 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection", decode=True, shuffle=False) test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1) dataCoco2 = dataCoco2.map(input_columns=["image", "bbox"], output_columns=["image", "bbox"], columns_order=["image", "bbox"], operations=[test_op]) unaugSamp, augSamp = [], [] for unAug, Aug in zip(dataCoco1.create_dict_iterator(), dataCoco2.create_dict_iterator()): unaugSamp.append(unAug) augSamp.append(Aug) if plot_vis: visualize_with_bounding_boxes(unaugSamp, augSamp, "bbox") def test_bounding_box_augment_valid_edge_c(plot_vis=False): """ Test BoundingBoxAugment op (testing with valid edge case, box covering full image). Prints images side by side with and without Aug applied + bboxes to compare and test """ logger.info("test_bounding_box_augment_valid_edge_c") original_seed = config_get_set_seed(1) original_num_parallel_workers = config_get_set_num_parallel_workers(1) dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1) # map to apply ops # Add column for "annotation" dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"], output_columns=["image", "annotation"], columns_order=["image", "annotation"], operations=lambda img, bbox: (img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32))) dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], output_columns=["image", "annotation"], columns_order=["image", "annotation"], operations=lambda img, bbox: (img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32))) dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], output_columns=["image", "annotation"], columns_order=["image", "annotation"], operations=[test_op]) filename = "bounding_box_augment_valid_edge_c_result.npz" save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN) unaugSamp, augSamp = [], [] for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()): unaugSamp.append(unAug) augSamp.append(Aug) if plot_vis: visualize_with_bounding_boxes(unaugSamp, augSamp) # Restore config setting ds.config.set_seed(original_seed) ds.config.set_num_parallel_workers(original_num_parallel_workers) def test_bounding_box_augment_invalid_ratio_c(): """ Test BoundingBoxAugment op with invalid input ratio """ logger.info("test_bounding_box_augment_invalid_ratio_c") dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) try: # ratio range is from 0 - 1 test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5) # map to apply ops dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], output_columns=["image", "annotation"], columns_order=["image", "annotation"], operations=[test_op]) # Add column for "annotation" except ValueError as error: logger.info("Got an exception in DE: {}".format(str(error))) assert "Input is not" in str(error) def test_bounding_box_augment_invalid_bounds_c(): """ Test BoundingBoxAugment op with invalid bboxes. """ logger.info("test_bounding_box_augment_invalid_bounds_c") test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1) dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image") dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image") dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "min_x") dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features") if __name__ == "__main__": # set to false to not show plots test_bounding_box_augment_with_rotation_op(plot_vis=False) test_bounding_box_augment_with_crop_op(plot_vis=False) test_bounding_box_augment_op_coco_c(plot_vis=False) test_bounding_box_augment_valid_ratio_c(plot_vis=False) test_bounding_box_augment_valid_edge_c(plot_vis=False) test_bounding_box_augment_invalid_ratio_c() test_bounding_box_augment_invalid_bounds_c()