# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ eval. """ import os import argparse from mindspore import context from mindspore import nn from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.mobilenetV2_quant import mobilenet_v2_quant from src.dataset import create_dataset from src.config import config_ascend parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--platform', type=str, default=None, help='run platform') args_opt = parser.parse_args() if __name__ == '__main__': config_platform = None net = None if args_opt.platform == "Ascend": config_platform = config_ascend device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) net = mobilenet_v2_quant(num_classes=config_platform.num_classes) else: raise ValueError("Unsupport platform.") loss = nn.SoftmaxCrossEntropyWithLogits( is_grad=False, sparse=True, reduction='mean') dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, config=config_platform, platform=args_opt.platform, batch_size=config_platform.batch_size) step_size = dataset.get_dataset_size() if args_opt.checkpoint_path: param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) model = Model(net, loss_fn=loss, metrics={'acc'}) res = model.eval(dataset) print("result:", res, "ckpt=", args_opt.checkpoint_path)