# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test model train """ import os import numpy as np from apply_momentum import ApplyMomentum import mindspore.context as context import mindspore.nn as nn from mindspore.nn import wrap from mindspore import Tensor, Model from mindspore.common.api import ms_function from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.ops import operations as P from mindspore.train.summary.summary_record import SummaryRecord CUR_DIR = os.getcwd() SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/" context.set_context(device_target="Ascend") class MsWrapper(nn.Cell): def __init__(self, network): super(MsWrapper, self).__init__(auto_prefix=False) self._network = network @ms_function def construct(self, *args): return self._network(*args) def me_train_tensor(net, input_np, label_np, epoch_size=2): context.set_context(mode=context.GRAPH_MODE) loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) opt = ApplyMomentum(Tensor(np.array([0.1])), Tensor(np.array([0.9])), filter(lambda x: x.requires_grad, net.get_parameters())) Model(net, loss, opt) _network = wrap.WithLossCell(net, loss) _train_net = MsWrapper(wrap.TrainOneStepCell(_network, opt)) _train_net.set_train() with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=_train_net) as summary_writer: for epoch in range(0, epoch_size): print(f"epoch %d" % (epoch)) output = _train_net(Tensor(input_np), Tensor(label_np)) summary_writer.record(i) print("********output***********") print(output.asnumpy()) def me_infer_tensor(net, input_np): net.set_train() net = MsWrapper(net) output = net(Tensor(input_np)) return output def test_net(): class Net(nn.Cell): def __init__(self, cin, cout): super(Net, self).__init__() self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same") self.conv = nn.Conv2d(cin, cin, kernel_size=1, stride=1, padding=0, has_bias=False, pad_mode="same") self.bn = nn.BatchNorm2d(cin, momentum=0.1, eps=0.0001) self.add = P.TensorAdd() self.relu = P.ReLU() self.mean = P.ReduceMean(keep_dims=True) self.reshape = P.Reshape() self.dense = nn.Dense(cin, cout) def construct(self, input_x): output = input_x output = self.maxpool(output) identity = output output = self.conv(output) output = self.bn(output) output = self.add(output, identity) output = self.relu(output) output = self.mean(output, (-2, -1)) output = self.reshape(output, (32, -1)) output = self.dense(output) return output net = Net(2048, 1001) input_np = np.ones([32, 2048, 14, 14]).astype(np.float32) * 0.01 label_np = np.ones([32]).astype(np.int32) me_train_tensor(net, input_np, label_np) # me_infer_tensor(net, input_np)