# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor from tests.ut.python.ops.test_math_ops import VirtualLoss import mindspore as ms from mindspore.common.api import _executor from mindspore.ops import composite as C class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y): predict = self.network(x, y) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y): return C.grad_all(self.network)(x, y) def test_prelu_single_success1(): class Net(nn.Cell): def __init__(self): super().__init__() self.prelu = P.PReLU() def construct(self, x, y): out = self.prelu(x, y) return out context.reset_auto_parallel_context() net = GradWrap(NetWithLoss(Net())) x = Tensor(np.random.rand(1, 33, 4, 4), ms.float32) w = Tensor(np.random.rand(33), ms.float32) _executor.compile(net, x, w) def test_prelu_single_success2(): class Net(nn.Cell): def __init__(self): super().__init__() self.prelu = P.PReLU() def construct(self, x, y): out = self.prelu(x, y) return out context.reset_auto_parallel_context() net = GradWrap(NetWithLoss(Net())) x = Tensor(np.random.rand(1, 33, 4, 4), ms.float32) w = Tensor([0.1], ms.float32) _executor.compile(net, x, w) def test_prelu_parallel_success1(): class Net(nn.Cell): def __init__(self, strategy): super().__init__() self.prelu = P.PReLU().set_strategy(strategy) def construct(self, x, y): out = self.prelu(x, y) return out context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=8, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy = ((1, 1, 1, 1), (1, )) x = Tensor(np.random.rand(4, 4, 32, 64),dtype=ms.float32) w = Tensor(np.random.rand(4),dtype=ms.float32) net = GradWrap(NetWithLoss(Net(strategy))) _executor.compile(net, x, w) def test_prelu_parallel_success2(): class Net(nn.Cell): def __init__(self, strategy): super().__init__() self.prelu = P.PReLU().set_strategy(strategy) def construct(self, x, y): out = self.prelu(x, y) return out context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=64, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy = ((2, 1, 4, 8), (1, )) x = Tensor(np.random.rand(4, 4, 32, 64),dtype=ms.float32) w = Tensor(np.random.rand(4),dtype=ms.float32) net = GradWrap(NetWithLoss(Net(strategy))) _executor.compile(net, x, w) def test_prelu_parallel_success3(): class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, w): predict = self.network(x, y, w) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, w): return C.grad_all(self.network)(x, y, w) class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.prelu = P.PReLU().set_strategy(strategy2) def construct(self, x, y, w): out = self.matmul(x, y) out = self.prelu(out, w) return out context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=64, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy1 = ((2, 4), (4, 2)) strategy2 = ((32, 1), (1, )) x = Tensor(np.random.rand(128, 64),dtype=ms.float32) y = Tensor(np.random.rand(64, 16),dtype=ms.float32) w = Tensor(np.random.rand(16),dtype=ms.float32) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) _executor.compile(net, x, y, w) def test_prelu_parallel_success4(): class Net(nn.Cell): def __init__(self, strategy): super().__init__() self.prelu = P.PReLU().set_strategy(strategy) def construct(self, x, y): out = self.prelu(x, y) return out context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=64, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy = ((2, 4, 4, 2), (4, )) x = Tensor(np.random.rand(4, 16, 32, 64),dtype=ms.float32) w = Tensor(np.random.rand(16),dtype=ms.float32) net = GradWrap(NetWithLoss(Net(strategy))) _executor.compile(net, x, w) def test_prelu_parallel_success5(): class Net(nn.Cell): def __init__(self, strategy): super().__init__() self.prelu = P.PReLU().set_strategy(strategy) def construct(self, x, y): out = self.prelu(x, y) return out context.reset_auto_parallel_context() context.set_auto_parallel_context(device_num=64, global_rank=0) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") strategy = ((2, 4, 4, 2), (1, )) x = Tensor(np.random.rand(4, 16, 32, 64),dtype=ms.float32) w = Tensor(np.random.rand(1),dtype=ms.float32) net = GradWrap(NetWithLoss(Net(strategy))) _executor.compile(net, x, w)