# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore.nn as nn import mindspore.context as context from mindspore import Tensor from mindspore.nn.optim import Momentum from mindspore.ops import operations as P from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import Dense from mindspore.common.initializer import initializer from mindspore.common import dtype as mstype context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class LeNet(nn.Cell): def __init__(self): super(LeNet, self).__init__() self.relu = P.ReLU() self.batch_size = 1 weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01) weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01) self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid") self.reshape = P.Reshape() self.reshape1 = P.Reshape() self.fc1 = Dense(400, 120) self.fc2 = Dense(120, 84) self.fc3 = Dense(84, 10) def construct(self, input_x): output = self.conv1(input_x) output = self.relu(output) output = self.pool(output) output = self.conv2(output) output = self.relu(output) output = self.pool(output) output = self.reshape(output, (self.batch_size, -1)) output = self.fc1(output) output = self.fc2(output) output = self.fc3(output) return output def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32): lr = [] for step in range(total_steps): lr_ = base_lr * gamma ** (step//gap) lr.append(lr_) return Tensor(np.array(lr), dtype) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_train_lenet(): epoch = 100 net = LeNet() momentum = initializer(Tensor(np.array([0.9]).astype(np.float32)), [1]) learning_rate = multisteplr(epoch, 30) optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer train_network.set_train() losses = [] for i in range(epoch): data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.ones([net.batch_size]).astype(np.int32)) loss = train_network(data, label) losses.append(loss) print(losses)