# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ optimizer parameters. """ def get_param_groups(network): """get param groups""" decay_params = [] no_decay_params = [] for x in network.trainable_params(): parameter_name = x.name if parameter_name.endswith('.bias'): # all bias not using weight decay # print('no decay:{}'.format(parameter_name)) no_decay_params.append(x) elif parameter_name.endswith('.gamma'): # bn weight bias not using weight decay, be carefully for now x not include BN # print('no decay:{}'.format(parameter_name)) no_decay_params.append(x) elif parameter_name.endswith('.beta'): # bn weight bias not using weight decay, be carefully for now x not include BN # print('no decay:{}'.format(parameter_name)) no_decay_params.append(x) else: decay_params.append(x) return [{'params': no_decay_params, 'weight_decay': 0.0}, {'params': decay_params}]