# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Testing configuration manager """ import filecmp import glob import numpy as np import os import mindspore.dataset as ds import mindspore.dataset.transforms.vision.c_transforms as vision import mindspore.dataset.transforms.vision.py_transforms as py_vision from mindspore import log as logger DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" def test_basic(): """ Test basic configuration functions """ # Save original configuration values num_parallel_workers_original = ds.config.get_num_parallel_workers() prefetch_size_original = ds.config.get_prefetch_size() seed_original = ds.config.get_seed() ds.config.load('../data/dataset/declient.cfg') # assert ds.config.get_rows_per_buffer() == 32 assert ds.config.get_num_parallel_workers() == 4 # assert ds.config.get_worker_connector_size() == 16 assert ds.config.get_prefetch_size() == 16 assert ds.config.get_seed() == 5489 # ds.config.set_rows_per_buffer(1) ds.config.set_num_parallel_workers(2) # ds.config.set_worker_connector_size(3) ds.config.set_prefetch_size(4) ds.config.set_seed(5) # assert ds.config.get_rows_per_buffer() == 1 assert ds.config.get_num_parallel_workers() == 2 # assert ds.config.get_worker_connector_size() == 3 assert ds.config.get_prefetch_size() == 4 assert ds.config.get_seed() == 5 # Restore original configuration values ds.config.set_num_parallel_workers(num_parallel_workers_original) ds.config.set_prefetch_size(prefetch_size_original) ds.config.set_seed(seed_original) def test_get_seed(): """ This gets the seed value without explicitly setting a default, expect int. """ assert isinstance(ds.config.get_seed(), int) def test_pipeline(): """ Test that our configuration pipeline works when we set parameters at different locations in dataset code """ # Save original configuration values num_parallel_workers_original = ds.config.get_num_parallel_workers() data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) ds.config.set_num_parallel_workers(2) data1 = data1.map(input_columns=["image"], operations=[vision.Decode(True)]) ds.serialize(data1, "testpipeline.json") data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False) ds.config.set_num_parallel_workers(4) data2 = data2.map(input_columns=["image"], operations=[vision.Decode(True)]) ds.serialize(data2, "testpipeline2.json") # check that the generated output is different assert (filecmp.cmp('testpipeline.json', 'testpipeline2.json')) # this test passes currently because our num_parallel_workers don't get updated. # remove generated jason files file_list = glob.glob('*.json') for f in file_list: try: os.remove(f) except IOError: logger.info("Error while deleting: {}".format(f)) # Restore original configuration values ds.config.set_num_parallel_workers(num_parallel_workers_original) def test_deterministic_run_fail(): """ Test RandomCrop with seed, expected to fail """ logger.info("test_deterministic_run_fail") # Save original configuration values num_parallel_workers_original = ds.config.get_num_parallel_workers() seed_original = ds.config.get_seed() # when we set the seed all operations within our dataset should be deterministic ds.config.set_seed(0) ds.config.set_num_parallel_workers(1) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # Assuming we get the same seed on calling constructor, if this op is re-used then result won't be # the same in between the two datasets. For example, RandomCrop constructor takes seed (0) # outputs a deterministic series of numbers, e,g "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200]) decode_op = vision.Decode() data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=random_crop_op) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=decode_op) # If seed is set up on constructor data2 = data2.map(input_columns=["image"], operations=random_crop_op) try: for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): np.testing.assert_equal(item1["image"], item2["image"]) except BaseException as e: # two datasets split the number out of the sequence a logger.info("Got an exception in DE: {}".format(str(e))) assert "Array" in str(e) # Restore original configuration values ds.config.set_num_parallel_workers(num_parallel_workers_original) ds.config.set_seed(seed_original) def test_deterministic_run_pass(): """ Test deterministic run with with setting the seed """ logger.info("test_deterministic_run_pass") # Save original configuration values num_parallel_workers_original = ds.config.get_num_parallel_workers() seed_original = ds.config.get_seed() ds.config.set_seed(0) ds.config.set_num_parallel_workers(1) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # We get the seed when constructor is called random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200]) decode_op = vision.Decode() data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=random_crop_op) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=decode_op) # Since seed is set up on constructor, so the two ops output deterministic sequence. # Assume the generated random sequence "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random random_crop_op2 = vision.RandomCrop([512, 512], [200, 200, 200, 200]) data2 = data2.map(input_columns=["image"], operations=random_crop_op2) try: for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): np.testing.assert_equal(item1["image"], item2["image"]) except BaseException as e: # two datasets both use numbers from the generated sequence "a" logger.info("Got an exception in DE: {}".format(str(e))) assert "Array" in str(e) # Restore original configuration values ds.config.set_num_parallel_workers(num_parallel_workers_original) ds.config.set_seed(seed_original) def test_seed_undeterministic(): """ Test seed with num parallel workers in c, this test is expected to fail some of the time """ logger.info("test_seed_undeterministic") # Save original configuration values num_parallel_workers_original = ds.config.get_num_parallel_workers() seed_original = ds.config.get_seed() ds.config.set_seed(0) ds.config.set_num_parallel_workers(1) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # seed will be read in during constructor call random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200]) decode_op = vision.Decode() data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=random_crop_op) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=decode_op) # If seed is set up on constructor, so the two ops output deterministic sequence random_crop_op2 = vision.RandomCrop([512, 512], [200, 200, 200, 200]) data2 = data2.map(input_columns=["image"], operations=random_crop_op2) for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): np.testing.assert_equal(item1["image"], item2["image"]) # Restore original configuration values ds.config.set_num_parallel_workers(num_parallel_workers_original) ds.config.set_seed(seed_original) def test_deterministic_run_distribution(): """ Test deterministic run with with setting the seed being used in a distribution """ logger.info("test_deterministic_run_distribution") # Save original configuration values num_parallel_workers_original = ds.config.get_num_parallel_workers() seed_original = ds.config.get_seed() # when we set the seed all operations within our dataset should be deterministic ds.config.set_seed(0) ds.config.set_num_parallel_workers(1) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) random_crop_op = vision.RandomHorizontalFlip(0.1) decode_op = vision.Decode() data1 = data1.map(input_columns=["image"], operations=decode_op) data1 = data1.map(input_columns=["image"], operations=random_crop_op) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=decode_op) # If seed is set up on constructor, so the two ops output deterministic sequence random_crop_op2 = vision.RandomHorizontalFlip(0.1) data2 = data2.map(input_columns=["image"], operations=random_crop_op2) for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): np.testing.assert_equal(item1["image"], item2["image"]) # Restore original configuration values ds.config.set_num_parallel_workers(num_parallel_workers_original) ds.config.set_seed(seed_original) def test_deterministic_python_seed(): """ Test deterministic execution with seed in python """ logger.info("deterministic_random_crop_op_python_2") # Save original configuration values num_parallel_workers_original = ds.config.get_num_parallel_workers() seed_original = ds.config.get_seed() ds.config.set_seed(0) ds.config.set_num_parallel_workers(1) # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms = [ py_vision.Decode(), py_vision.RandomCrop([512, 512], [200, 200, 200, 200]), py_vision.ToTensor(), ] transform = py_vision.ComposeOp(transforms) data1 = data1.map(input_columns=["image"], operations=transform()) data1_output = [] # config.set_seed() calls random.seed() for data_one in data1.create_dict_iterator(): data1_output.append(data_one["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) data2 = data2.map(input_columns=["image"], operations=transform()) # config.set_seed() calls random.seed(), resets seed for next dataset iterator ds.config.set_seed(0) data2_output = [] for data_two in data2.create_dict_iterator(): data2_output.append(data_two["image"]) np.testing.assert_equal(data1_output, data2_output) # Restore original configuration values ds.config.set_num_parallel_workers(num_parallel_workers_original) ds.config.set_seed(seed_original) def test_deterministic_python_seed_multi_thread(): """ Test deterministic execution with seed in python, this fails with multi-thread pyfunc run """ logger.info("deterministic_random_crop_op_python_2") # Save original configuration values seed_original = ds.config.get_seed() ds.config.set_seed(0) # when we set the seed all operations within our dataset should be deterministic # First dataset data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) transforms = [ py_vision.Decode(), py_vision.RandomCrop([512, 512], [200, 200, 200, 200]), py_vision.ToTensor(), ] transform = py_vision.ComposeOp(transforms) data1 = data1.map(input_columns=["image"], operations=transform(), python_multiprocessing=True) data1_output = [] # config.set_seed() calls random.seed() for data_one in data1.create_dict_iterator(): data1_output.append(data_one["image"]) # Second dataset data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) # If seed is set up on constructor data2 = data2.map(input_columns=["image"], operations=transform(), python_multiprocessing=True) # config.set_seed() calls random.seed() ds.config.set_seed(0) data2_output = [] for data_two in data2.create_dict_iterator(): data2_output.append(data_two["image"]) try: np.testing.assert_equal(data1_output, data2_output) except BaseException as e: # expect output to not match during multi-threaded excution logger.info("Got an exception in DE: {}".format(str(e))) assert "Array" in str(e) # Restore original configuration values ds.config.set_seed(seed_original) if __name__ == '__main__': test_basic() test_pipeline() test_deterministic_run_pass() test_deterministic_run_distribution() test_deterministic_run_fail() test_deterministic_python_seed() test_seed_undeterministic() test_get_seed()