# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Image classifiation. """ import math import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore.common import initializer as init from mindspore.common.initializer import initializer from .utils.var_init import default_recurisive_init, KaimingNormal def _make_layer(base, args, batch_norm): """Make stage network of VGG.""" layers = [] in_channels = 3 for v in base: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: weight = 'ones' if args.initialize_mode == "XavierUniform": weight_shape = (v, in_channels, 3, 3) weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor() conv2d = nn.Conv2d(in_channels=in_channels, out_channels=v, kernel_size=3, padding=args.padding, pad_mode=args.pad_mode, has_bias=args.has_bias, weight_init=weight) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()] else: layers += [conv2d, nn.ReLU()] in_channels = v return nn.SequentialCell(layers) class Vgg(nn.Cell): """ VGG network definition. Args: base (list): Configuration for different layers, mainly the channel number of Conv layer. num_classes (int): Class numbers. Default: 1000. batch_norm (bool): Whether to do the batchnorm. Default: False. batch_size (int): Batch size. Default: 1. Returns: Tensor, infer output tensor. Examples: >>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], >>> num_classes=1000, batch_norm=False, batch_size=1) """ def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1, args=None, phase="train"): super(Vgg, self).__init__() _ = batch_size self.layers = _make_layer(base, args, batch_norm=batch_norm) self.flatten = nn.Flatten() dropout_ratio = 0.5 if not args.has_dropout or phase == "test": dropout_ratio = 1.0 self.classifier = nn.SequentialCell([ nn.Dense(512 * 7 * 7, 4096), nn.ReLU(), nn.Dropout(dropout_ratio), nn.Dense(4096, 4096), nn.ReLU(), nn.Dropout(dropout_ratio), nn.Dense(4096, num_classes)]) if args.initialize_mode == "KaimingNormal": default_recurisive_init(self) self.custom_init_weight() def construct(self, x): x = self.layers(x) x = self.flatten(x) x = self.classifier(x) return x def custom_init_weight(self): """ Init the weight of Conv2d and Dense in the net. """ for _, cell in self.cells_and_names(): if isinstance(cell, nn.Conv2d): cell.weight.default_input = init.initializer( KaimingNormal(a=math.sqrt(5), mode='fan_out', nonlinearity='relu'), cell.weight.shape, cell.weight.dtype) if cell.bias is not None: cell.bias.default_input = init.initializer( 'zeros', cell.bias.shape, cell.bias.dtype) elif isinstance(cell, nn.Dense): cell.weight.default_input = init.initializer( init.Normal(0.01), cell.weight.shape, cell.weight.dtype) if cell.bias is not None: cell.bias.default_input = init.initializer( 'zeros', cell.bias.shape, cell.bias.dtype) cfg = { '11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], '13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], '16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], '19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def vgg16(num_classes=1000, args=None, phase="train"): """ Get Vgg16 neural network with batch normalization. Args: num_classes (int): Class numbers. Default: 1000. args(namespace): param for net init. phase(str): train or test mode. Returns: Cell, cell instance of Vgg16 neural network with batch normalization. Examples: >>> vgg16(num_classes=1000, args=args) """ if args is None: from .config import cifar_cfg args = cifar_cfg net = Vgg(cfg['16'], num_classes=num_classes, args=args, batch_norm=args.batch_norm, phase=phase) return net