# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ choose samples from the dataset """ import math import numpy as np class DistributedSampler(): """ sampling the dataset. Args: Returns: num_samples, number of samples. """ def __init__(self, dataset, rank, group_size, shuffle=True, seed=0): self.dataset = dataset self.rank = rank self.group_size = group_size self.dataset_length = len(self.dataset) self.num_samples = int(math.ceil(self.dataset_length * 1.0 / self.group_size)) self.total_size = self.num_samples * self.group_size self.shuffle = shuffle self.seed = seed def __iter__(self): if self.shuffle: self.seed = (self.seed + 1) & 0xffffffff np.random.seed(self.seed) indices = np.random.permutation(self.dataset_length).tolist() else: indices = list(range(len(self.dataset_length))) indices += indices[:(self.total_size - len(indices))] indices = indices[self.rank::self.group_size] return iter(indices) def __len__(self): return self.num_samples