# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ network config setting, will be used in train.py and eval.py """ from easydict import EasyDict as edict # config for vgg16, cifar10 cifar_cfg = edict({ "num_classes": 10, "lr": 0.01, "lr_init": 0.01, "lr_max": 0.1, "lr_epochs": '30,60,90,120', "lr_scheduler": "step", "warmup_epochs": 5, "batch_size": 64, "max_epoch": 70, "momentum": 0.9, "weight_decay": 5e-4, "loss_scale": 1.0, "label_smooth": 0, "label_smooth_factor": 0, "buffer_size": 10, "image_size": '224,224', "pad_mode": 'same', "padding": 0, "has_bias": False, "batch_norm": True, "keep_checkpoint_max": 10, "initialize_mode": "XavierUniform", "has_dropout": False }) # config for vgg16, imagenet2012 imagenet_cfg = edict({ "num_classes": 1000, "lr": 0.01, "lr_init": 0.01, "lr_max": 0.1, "lr_epochs": '30,60,90,120', "lr_scheduler": 'cosine_annealing', "warmup_epochs": 0, "batch_size": 32, "max_epoch": 150, "momentum": 0.9, "weight_decay": 1e-4, "loss_scale": 1024, "label_smooth": 1, "label_smooth_factor": 0.1, "buffer_size": 10, "image_size": '224,224', "pad_mode": 'pad', "padding": 1, "has_bias": False, "batch_norm": False, "keep_checkpoint_max": 10, "initialize_mode": "XavierUnifor", "has_dropout": True })