# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Parameters utils""" from mindspore import Tensor from mindspore.common.initializer import initializer, TruncatedNormal def init_net_param(network, initialize_mode='TruncatedNormal'): """Init the parameters in net.""" params = network.trainable_params() for p in params: if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name: if initialize_mode == 'TruncatedNormal': p.set_parameter_data(initializer(TruncatedNormal(0.03), p.data.shape(), p.data.dtype())) else: p.set_parameter_data(initialize_mode, p.data.shape(), p.data.dtype()) def load_backbone_params(network, param_dict): """Init the parameters from pre-train model, default is mobilenetv2.""" for _, param in net.parameters_and_names(): param_name = param.name.replace('network.backbone.', '') name_split = param_name.split('.') if 'features_1' in param_name: param_name = param_name.replace('features_1', 'features') if 'features_2' in param_name: param_name = '.'.join(['features', str(int(name_split[1]) + 14)] + name_split[2:]) if param_name in param_dict: param.set_parameter_data(param_dict[param_name].data)