# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.parameter import Parameter, ParameterTuple from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim.momentum import Momentum from mindspore.ops import composite as C, functional as F, operations as P from mindspore.train import Model, ParallelMode from mindspore.train.loss_scale_manager import DynamicLossScaleManager from tests.dataset_mock import MindData context.set_context(mode=context.GRAPH_MODE) class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class AllToAllNet(nn.Cell): def __init__(self, strategy1): super(AllToAllNet, self).__init__() self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8))) self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight") self.transpose1 = P.Transpose().set_strategy(strategy1) def construct(self, x): x = self.matmul(x, self.matmul_weight) x = self.transpose1(x, (1, 0)) return x def all_to_all_net(strategy1): return AllToAllNet(strategy1=strategy1) def loss_scale_manager_common(strategy1): learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, device_num=8) predict = Tensor(np.ones([32, 128]), dtype=ms.float32) label = Tensor(np.ones([32]), dtype=ms.int32) dataset = Dataset(predict, label, 2) net = all_to_all_net(strategy1) loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) loss.softmax_cross_entropy.set_strategy(((8, 1), (8, 1))) opt = Momentum(net.trainable_params(), learning_rate, momentum) scale_manager = DynamicLossScaleManager(32, 2, 2000) model = Model(net, loss, opt, loss_scale_manager=scale_manager) # if no GE exists, outputs = self._train_network(*next_element) outputs inputs tensor. try: model.train(epoch_size, dataset, dataset_sink_mode=False) except TypeError: pass else: assert False def fixme_test_dataset_interface_sens_scalar(): # With error: "The type of sens node is not Tensor or Parameter, it is unsupported now." strategy1 = ((8, 1),) loss_scale_manager_common(strategy1) class TrainOneStepCell(nn.Cell): def __init__(self, network, optimizer): super(TrainOneStepCell, self).__init__(auto_prefix=False) self.network = network self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) def construct(self, data, sens): weights = self.weights loss = self.network(data) grads = self.grad(self.network, weights)(data, sens) return F.depend(loss, self.optimizer(grads)) def loss_scale_manager_sens(strategy1, sens): learning_rate = 0.1 momentum = 0.9 device_num = 8 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num) predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32) net = all_to_all_net(strategy1) opt = Momentum(net.trainable_params(), learning_rate, momentum) train_net = TrainOneStepCell(net, opt) train_net.set_train() train_net(predict, sens) def test_dataset_interface_sens_shape_not_equal_loss(): strategy1 = ((8, 1),) sens = Tensor(np.ones([256, 1024]), dtype=ms.float32) try: loss_scale_manager_sens(strategy1, sens) except BaseException: pass def test_dataset_interface_sens_shape_equal_loss(): strategy1 = ((4, 2),) sens = Tensor(np.ones([256, 256]), dtype=ms.float32) loss_scale_manager_sens(strategy1, sens) def test_input_not_in_parameter_layotu_dict(): class Net(nn.Cell): def __init__(self, strategy1): super(Net, self).__init__() self.matmul = P.MatMul().set_strategy(((1, 1), (1, 8))) self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight") self.transpose1 = P.Transpose().set_strategy(strategy1) def construct(self, x, b): x = self.matmul(x, self.matmul_weight) x = self.transpose1(x, (1, 0)) return x strategy1 = ((8, 1),) device_num = 8 context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_num) predict = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32) b = Tensor(np.ones([32 * device_num, 128]), dtype=ms.float32) net = Net(strategy1) net.set_train() net(predict, b)