# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test checking for some ops""" import functools import logging import numpy as np import pytest from mindspore import nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.common.api import _executor from ..ut_filter import non_graph_engine from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config from ....mindspore_test_framework.pipeline.forward.verify_exception \ import pipeline_for_verify_exception_for_case_by_case_config logging.basicConfig(level=logging.WARNING) class NetMissConstruct(nn.Cell): """ NetMissConstruct definition """ def __init__(self): super(NetMissConstruct, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid') self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') self.fc1 = nn.Dense(16 * 5 * 5, 120) self.fc2 = nn.Dense(120, 84) self.fc3 = nn.Dense(84, 10) self.relu = nn.ReLU() self.max_pool2d = nn.MaxPool2d(kernel_size=2) self.flatten = P.Flatten() # pylint: disable=abstract-method # TestCase: Mis-spelled 'construct' to 'construtc' def construtc(self, x): x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv2(x))) x = self.flatten(x) x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x def test_net_without_construct(): """ test_net_without_construct """ net = NetMissConstruct() inp = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)) try: _executor.compile(net, inp) except RuntimeError as err: if str(err).find("Unsupported syntax 'Raise' at ") >= 0: print(str(err)) else: raise err class NetWithRaise(nn.Cell): """ NetWithRaise definition """ def __init__(self): super(NetWithRaise, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid') # raise exception in method 'construct' def construct(self, x): raise 'exception in construct' def test_net_with_raise(): """ test_net_with_raise """ net = NetWithRaise() inp = Tensor(np.ones([1, 1, 32, 32]).astype(np.float32)) try: _executor.compile(net, inp) except RuntimeError as err: if str(err).find("Unsupported syntax 'Raise' at ") >= 0: print(str(err)) else: raise err class NetAddN(nn.Cell): """net for test AddN""" def __init__(self): super(NetAddN, self).__init__() self.net = P.AddN() def construct(self, x): return self.net(x) class NetSplit(nn.Cell): "net for test Split" def __init__(self): super(NetSplit, self).__init__() self.net = P.Split(1, 2) def construct(self, x): return self.net(x) class NetBatchMatMul(nn.Cell): """net for test BatchMatMul""" def __init__(self): super(NetBatchMatMul, self).__init__() self.op = P.BatchMatMul() def construct(self, x, y): return self.op(x, y) test_case_check_ops = [ ('Conv_Padding_1', { 'block': nn.Conv2d(1, 6, 5, pad_mode='same', padding=0), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Padding_2', { 'block': nn.Conv2d(1, 6, 5, pad_mode='valid', padding=0), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Padding_3', { 'block': nn.Conv2d(1, 6, 5, pad_mode='pad', padding=0), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Padding_4', { 'block': nn.Conv2d(1, 6, 5, pad_mode='pad', padding=7), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Bias_1', { 'block': nn.Conv2d(1, 6, 5, has_bias=True, bias_init=Tensor(np.ones([6]).astype(np.float32))), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Bias_2', { 'block': nn.Conv2d(1, 6, 5, has_bias=True, bias_init='zeros'), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Bias_3', { 'block': nn.Conv2d(1, 6, 5, has_bias=False, bias_init='zeros'), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Bias_4', { 'block': nn.Conv2d(1, 6, 5, has_bias=False, bias_init=Tensor(np.ones([6]).astype(np.float32))), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Dense_Bias_1', { 'block': nn.Dense(1, 6, has_bias=True, bias_init=Tensor(np.ones([6]).astype(np.float32))), 'desc_inputs': [Tensor(np.ones(shape=[6, 1]).astype(np.float32))]}), ('Dense_Bias_2', { 'block': nn.Dense(1, 6, has_bias=True, bias_init='zeros'), 'desc_inputs': [Tensor(np.ones(shape=[6, 1]).astype(np.float32))]}), ('Dense_Bias_3', { 'block': nn.Dense(1, 6, has_bias=False, bias_init='zeros'), 'desc_inputs': [Tensor(np.ones(shape=[6, 1]).astype(np.float32))]}), ('Dense_Bias_4', { 'block': nn.Dense(1, 6, has_bias=False, bias_init=Tensor(np.ones([6]).astype(np.float32))), 'desc_inputs': [Tensor(np.ones(shape=[6, 1]).astype(np.float32))]}), ('MaxPool2d_1', { 'block': nn.MaxPool2d(5, pad_mode='same'), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}), ('MaxPool2d_2', { 'block': nn.MaxPool2d(5, pad_mode='valid'), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}), ('AvgPool2d_1', { 'block': nn.AvgPool2d(5, pad_mode='same'), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}), ('AvgPool2d_2', { 'block': nn.AvgPool2d(5, pad_mode='valid'), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32))]}), ('Conv2D_1', { 'block': P.Conv2D(1, 6, pad_mode='same', pad=0), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32)), Tensor(np.ones(shape=[1, 5, 6, 6]).astype(np.float32))]}), ('Conv2D_2', { 'block': P.Conv2D(1, 6, pad_mode='valid', pad=0), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32)), Tensor(np.ones(shape=[1, 5, 6, 6]).astype(np.float32))]}), ('Conv2D_3', { 'block': P.Conv2D(1, 6, pad_mode='pad', pad=0), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32)), Tensor(np.ones(shape=[1, 5, 6, 6]).astype(np.float32))]}), ('Conv2D_4', { 'block': P.Conv2D(1, 6, pad_mode='pad', pad=7), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32)), Tensor(np.ones(shape=[1, 5, 6, 6]).astype(np.float32))]}), ('MatMul_1', { 'block': P.MatMul(), 'desc_inputs': [Tensor(np.ones(shape=[1, 3])), Tensor(np.ones(shape=[3, 4]))]}), ('MatMul_2', { 'block': P.BatchMatMul(), 'desc_inputs': [Tensor(np.ones(shape=[5, 1, 5])), Tensor(np.ones(shape=[5, 5, 4]))]}), ('MatMul_Transpose_1', { 'block': P.MatMul(transpose_a=True), 'desc_inputs': [Tensor(np.ones(shape=[3, 1])), Tensor(np.ones(shape=[3, 4]))]}), ('MatMul_Transpose_2', { 'block': P.MatMul(transpose_b=True), 'desc_inputs': [Tensor(np.ones(shape=[3, 2])), Tensor(np.ones(shape=[5, 2]))]}), ('MatMul_Transpose_3', { 'block': P.MatMul(transpose_a=True, transpose_b=True), 'desc_inputs': [Tensor(np.ones(shape=[3, 2])), Tensor(np.ones(shape=[5, 3]))]}), ('BatchMatMul', { 'block': NetBatchMatMul(), 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5])), Tensor(np.ones(shape=[3, 5, 4]))]}), ] test_case_lists = [test_case_check_ops] test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists) # use -k to select certain testcast # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm import mindspore.context as context @non_graph_engine @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_exec(): context.set_context(mode=context.GRAPH_MODE) return test_exec_case raise_set = [ ('Conv_Padding_1_Error', { 'block': (lambda x: nn.Conv2d(1, 6, 5, pad_mode='same', padding=7), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv_Padding_2_Error', { 'block': (lambda x: nn.Conv2d(1, 6, 5, pad_mode='same', padding=7), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[1, 1, 6, 5]).astype(np.float32))]}), ('Conv2D_1_Error', { 'block': (lambda x, y: P.Conv2D(1, 6, pad_mode='same', pad=7), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32)), Tensor(np.ones(shape=[1, 5, 6, 6]).astype(np.float32))]}), ('Conv2D_2_Error', { 'block': (lambda x, y: P.Conv2D(1, 6, pad_mode='valid', pad=7), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[5, 5, 8, 8]).astype(np.float32)), Tensor(np.ones(shape=[1, 5, 6, 6]).astype(np.float32))]}), ('NetAddN_Error', { 'block': (NetAddN(), {'exception': TypeError}), 'desc_inputs': [(np.random.randn(1, 2, 3, 4).astype(np.float32), np.random.randn(1, 2, 3, 4).astype(np.float32))]}), ('AddN_Error', { 'block': (P.AddN(), {'exception': TypeError}), 'desc_inputs': [(np.random.randn(1, 2, 3, 4).astype(np.float32), np.random.randn(1, 2, 3, 4).astype(np.float32))]}), ('Splite_Error', { 'block': (NetSplit(), {'exception': TypeError}), 'desc_inputs': [None]}), ('MatMul_1_Error', { 'block': (P.MatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[5])), Tensor(np.ones(shape=[4]))]}), ('MatMul_2_Error', { 'block': (P.MatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[1, 5])), Tensor(np.ones(shape=[3, 4]))]}), ('MatMul_3_Error', { 'block': (P.MatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[1, 5])), Tensor(np.ones(shape=[5, 5, 4]))]}), ('MatMul_Transpose_1_Error', { 'block': (P.MatMul(transpose_a=True), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[1, 3])), Tensor(np.ones(shape=[3, 4]))]}), ('MatMul_Transpose_2_Error', { 'block': (P.MatMul(transpose_b=True), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[3, 2])), Tensor(np.ones(shape=[2, 5]))]}), ('MatMul_Transpose_3_Error', { 'block': (P.MatMul(transpose_a=True, transpose_b=True), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[3, 2])), Tensor(np.ones(shape=[3, 5]))]}), ('BatchMatMul_1_Error', { 'block': (P.BatchMatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[5])), Tensor(np.ones(shape=[4]))]}), ('BatchMatMul_2_Error', { 'block': (P.BatchMatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[1, 5])), Tensor(np.ones(shape=[3, 4]))]}), ('BatchMatMul_3_Error', { 'block': (P.BatchMatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5])), Tensor(np.ones(shape=[3, 3, 4]))]}), ('BatchMatMul_4_Error', { 'block': (P.BatchMatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5])), Tensor(np.ones(shape=[1, 3, 5, 4]))]}), ('BatchMatMul_5_Error', { 'block': (P.BatchMatMul(), {'exception': ValueError}), 'desc_inputs': [Tensor(np.ones(shape=[3, 1, 5])), Tensor(np.ones(shape=[2, 5, 4]))]}), ] @mindspore_test(pipeline_for_verify_exception_for_case_by_case_config) def test_check_exception(): return raise_set