# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # less required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Evaluation for MaskRcnn""" import os import argparse import time import random import numpy as np from pycocotools.coco import COCO from mindspore import context, Tensor from mindspore.train.serialization import load_checkpoint, load_param_into_net import mindspore.dataset.engine as de from src.MaskRcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50 from src.config import config from src.dataset import data_to_mindrecord_byte_image, create_maskrcnn_dataset from src.util import coco_eval, bbox2result_1image, results2json, get_seg_masks random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description="MaskRcnn evaluation") parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.") parser.add_argument("--ann_file", type=str, default="val.json", help="Ann file, default is val.json.") parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=args_opt.device_id) def MaskRcnn_eval(dataset_path, ckpt_path, ann_file): """MaskRcnn evaluation.""" ds = create_maskrcnn_dataset(dataset_path, batch_size=config.test_batch_size, is_training=False) net = Mask_Rcnn_Resnet50(config) param_dict = load_checkpoint(ckpt_path) load_param_into_net(net, param_dict) net.set_train(False) eval_iter = 0 total = ds.get_dataset_size() outputs = [] dataset_coco = COCO(ann_file) print("\n========================================\n") print("total images num: ", total) print("Processing, please wait a moment.") max_num = 128 for data in ds.create_dict_iterator(): eval_iter = eval_iter + 1 img_data = data['image'] img_metas = data['image_shape'] gt_bboxes = data['box'] gt_labels = data['label'] gt_num = data['valid_num'] gt_mask = data["mask"] start = time.time() # run net output = net(Tensor(img_data), Tensor(img_metas), Tensor(gt_bboxes), Tensor(gt_labels), Tensor(gt_num), Tensor(gt_mask)) end = time.time() print("Iter {} cost time {}".format(eval_iter, end - start)) # output all_bbox = output[0] all_label = output[1] all_mask = output[2] all_mask_fb = output[3] for j in range(config.test_batch_size): all_bbox_squee = np.squeeze(all_bbox.asnumpy()[j, :, :]) all_label_squee = np.squeeze(all_label.asnumpy()[j, :, :]) all_mask_squee = np.squeeze(all_mask.asnumpy()[j, :, :]) all_mask_fb_squee = np.squeeze(all_mask_fb.asnumpy()[j, :, :, :]) all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :] all_labels_tmp_mask = all_label_squee[all_mask_squee] all_mask_fb_tmp_mask = all_mask_fb_squee[all_mask_squee, :, :] if all_bboxes_tmp_mask.shape[0] > max_num: inds = np.argsort(-all_bboxes_tmp_mask[:, -1]) inds = inds[:max_num] all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds] all_labels_tmp_mask = all_labels_tmp_mask[inds] all_mask_fb_tmp_mask = all_mask_fb_tmp_mask[inds] bbox_results = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes) segm_results = get_seg_masks(all_mask_fb_tmp_mask, all_bboxes_tmp_mask, all_labels_tmp_mask, img_metas[j], True, config.num_classes) outputs.append((bbox_results, segm_results)) eval_types = ["bbox", "segm"] result_files = results2json(dataset_coco, outputs, "./results.pkl") coco_eval(result_files, eval_types, dataset_coco, single_result=False) if __name__ == '__main__': prefix = "MaskRcnn_eval.mindrecord" mindrecord_dir = config.mindrecord_dir mindrecord_file = os.path.join(mindrecord_dir, prefix) if not os.path.exists(mindrecord_file): if not os.path.isdir(mindrecord_dir): os.makedirs(mindrecord_dir) if args_opt.dataset == "coco": if os.path.isdir(config.coco_root): print("Create Mindrecord.") data_to_mindrecord_byte_image("coco", False, prefix, file_num=1) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("coco_root not exits.") else: if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH): print("Create Mindrecord.") data_to_mindrecord_byte_image("other", False, prefix, file_num=1) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("IMAGE_DIR or ANNO_PATH not exits.") print("Start Eval!") MaskRcnn_eval(mindrecord_file, args_opt.checkpoint_path, args_opt.ann_file)